Mplus Path Analysis Example 3.11
来自OBHRM百科
示意图
代码与注释
TITLE: this is an example of a path analysis ! 标题 with continuous dependent variables DATA: FILE IS ex3.11.dat; ! 数据文件 VARIABLE:NAMES ARE y1-y3 x1-x3; ! 数据文件中变量的名称,按顺序:y1,y2,y3,x1,x2,x3 MODEL: y1 y2 ON x1 x2 x3; ! x1,x2,x3分别到y1,y2的回归 y3 ON y1 y2 x2; ! x2,y1,y2到y3的回归 OUTPUT: STANDARDIZED; ! 结果:标准化结果。
结果
Mplus VERSION 7.4 MUTHEN & MUTHEN 03/21/2017 9:59 PM INPUT INSTRUCTIONS TITLE: this is an example of a path analysis ! 标题 with continuous dependent variables DATA: FILE IS ex3.11.dat; VARIABLE:NAMES ARE y1-y3 x1-x3; ! 数据文件中变量的名称,按顺序:y1,y2,y3,x1, MODEL: y1 y2 ON x1 x2 x3; ! x1,x2,x3分别到y1,y2的回归 y3 ON y1 y2 x2; ! x2,y1,y2到y3的回归 OUTPUT: STANDARDIZED; ! 结果:标准化结果。 *** WARNING Input line exceeded 90 characters. Some input may be truncated. DATA: FILE IS ex3.11.dat *** WARNING Input line exceeded 90 characters. Some input may be truncated. VARIABLE:NAMES ARE y1-y3 x1-x3; ! 数据文件中变量的名称,按顺序:y1,y2,y3,x1,x *** WARNING in DATA command Statement not terminated by a semicolon: FILE IS ex3.11.dat 3 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS this is an example of a path analysis with continuous dependent variables SUMMARY OF ANALYSIS Number of groups 1 Number of observations 500 Number of dependent variables 3 Number of independent variables 3 Number of continuous latent variables 0 Observed dependent variables Continuous Y1 Y2 Y3 Observed independent variables X1 X2 X3 Estimator ML Information matrix OBSERVED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 Input data file(s) E:\2016\Mplus\MPlus+7.4+64位\Mplus Examples\User's Guide Examples\ex3.11.dat Input data format FREE THE MODEL ESTIMATION TERMINATED NORMALLY MODEL FIT INFORMATION Number of Free Parameters 15 Loglikelihood H0 Value -2364.002 H1 Value -2363.623 Information Criteria Akaike (AIC) 4758.004 Bayesian (BIC) 4821.223 Sample-Size Adjusted BIC 4773.612 (n* = (n + 2) / 24) Chi-Square Test of Model Fit Value 0.757 Degrees of Freedom 3 P-Value 0.8598 RMSEA (Root Mean Square Error Of Approximation) Estimate 0.000 90 Percent C.I. 0.000 0.040 Probability RMSEA <= .05 0.972 CFI/TLI CFI 1.000 TLI 1.002 Chi-Square Test of Model Fit for the Baseline Model Value 4107.449 Degrees of Freedom 12 P-Value 0.0000 SRMR (Standardized Root Mean Square Residual) Value 0.001 MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value Y1 ON X1 0.992 0.043 22.979 0.000 X2 2.001 0.045 44.618 0.000 X3 3.052 0.045 68.274 0.000 Y2 ON X1 2.935 0.050 59.002 0.000 X2 1.992 0.052 38.556 0.000 X3 1.023 0.051 19.869 0.000 Y3 ON Y1 0.507 0.020 25.491 0.000 Y2 0.746 0.020 37.914 0.000 X2 1.046 0.072 14.540 0.000 Intercepts Y1 -1.064 0.046 -23.059 0.000 Y2 -0.042 0.053 -0.784 0.433 Y3 1.068 0.063 17.093 0.000 Residual Variances Y1 1.061 0.067 15.811 0.000 Y2 1.408 0.089 15.811 0.000 Y3 1.717 0.109 15.811 0.000 STANDARDIZED MODEL RESULTS STDYX Standardization Two-Tailed Estimate S.E. Est./S.E. P-Value Y1 ON X1 0.254 0.015 16.801 0.000 X2 0.495 0.020 24.957 0.000 X3 0.758 0.020 37.078 0.000 Y2 ON X1 0.759 0.021 35.491 0.000 X2 0.497 0.021 23.938 0.000 X3 0.256 0.016 15.680 0.000 Y3 ON Y1 0.375 0.016 23.022 0.000 Y2 0.547 0.016 34.161 0.000 X2 0.192 0.014 13.462 0.000 Intercepts Y1 -0.255 0.014 -18.599 0.000 Y2 -0.010 0.013 -0.784 0.433 Y3 0.190 0.012 15.238 0.000 Residual Variances Y1 0.061 0.005 11.537 0.000 Y2 0.082 0.007 11.671 0.000 Y3 0.054 0.005 11.497 0.000 STDY Standardization Two-Tailed Estimate S.E. Est./S.E. P-Value Y1 ON X1 0.238 0.012 19.425 0.000 X2 0.479 0.017 28.186 0.000 X3 0.731 0.023 32.092 0.000 Y2 ON X1 0.710 0.022 32.309 0.000 X2 0.482 0.018 27.283 0.000 X3 0.247 0.014 17.668 0.000 Y3 ON Y1 0.375 0.016 23.022 0.000 Y2 0.547 0.016 34.161 0.000 X2 0.186 0.014 13.468 0.000 Intercepts Y1 -0.255 0.014 -18.599 0.000 Y2 -0.010 0.013 -0.784 0.433 Y3 0.190 0.012 15.238 0.000 Residual Variances Y1 0.061 0.005 11.537 0.000 Y2 0.082 0.007 11.671 0.000 Y3 0.054 0.005 11.497 0.000 STD Standardization Two-Tailed Estimate S.E. Est./S.E. P-Value Y1 ON X1 0.992 0.043 22.979 0.000 X2 2.001 0.045 44.618 0.000 X3 3.052 0.045 68.274 0.000 Y2 ON X1 2.935 0.050 59.002 0.000 X2 1.992 0.052 38.556 0.000 X3 1.023 0.051 19.869 0.000 Y3 ON Y1 0.507 0.020 25.491 0.000 Y2 0.746 0.020 37.914 0.000 X2 1.046 0.072 14.540 0.000 Intercepts Y1 -1.064 0.046 -23.059 0.000 Y2 -0.042 0.053 -0.784 0.433 Y3 1.068 0.063 17.093 0.000 Residual Variances Y1 1.061 0.067 15.811 0.000 Y2 1.408 0.089 15.811 0.000 Y3 1.717 0.109 15.811 0.000 R-SQUARE Observed Two-Tailed Variable Estimate S.E. Est./S.E. P-Value Y1 0.939 0.005 177.949 0.000 Y2 0.918 0.007 130.104 0.000 Y3 0.946 0.005 201.127 0.000 QUALITY OF NUMERICAL RESULTS Condition Number for the Information Matrix 0.979E-02 (ratio of smallest to largest eigenvalue) DIAGRAM INFORMATION Use View Diagram under the Diagram menu in the Mplus Editor to view the diagram. If running Mplus from the Mplus Diagrammer, the diagram opens automatically. Diagram output e:\2016\mplus\mptext2.dgm Beginning Time: 21:59:39 Ending Time: 21:59:40 Elapsed Time: 00:00:01 MUTHEN & MUTHEN 3463 Stoner Ave. Los Angeles, CA 90066 Tel: (310) 391-9971 Fax: (310) 391-8971 Web: www.StatModel.com Support: Support@StatModel.com Copyright (c) 1998-2015 Muthen & Muthen