“Mplus MODEL”的版本间的差异
来自OBHRM百科
Lichaoping(讨论 | 贡献) |
Lichaoping(讨论 | 贡献) |
||
第1行: | 第1行: | ||
==MODEL命令语法== | ==MODEL命令语法== | ||
− | <pre>MODEL: | + | <pre>MODEL: |
− | BY short for measured by -- defines latent variables | + | BY short for measured by -- defines latent variables |
− | example: | + | example: f1 BY y1-y5; |
− | ON short for regressed on -- defines regression relationships | + | ON short for regressed on -- defines regression relationships |
− | example: | + | example: f1 ON x1-x9; |
− | PON short for regressed on -- defines paired regression relationships | + | PON short for regressed on -- defines paired regression relationships |
− | example: | + | example: f2 f3 PON f1 f2; |
− | WITH short for correlated with -- defines correlational relationships | + | WITH short for correlated with -- defines correlational relationships |
− | example: | + | example: f1 WITH f2; |
− | PWITH short for correlated with -- defines paired correlational relationships | + | PWITH short for correlated with -- defines paired correlational relationships |
− | example: | + | example: f1 f2 f3 PWITH f4 f5 f6; |
− | list of variables; refers to variances and residual variances | + | list of variables; refers to variances and residual variances |
− | example: | + | example: f1 y1-y9; |
− | [list of variables]; refers to means, intercepts, thresholds | + | [list of variables]; refers to means, intercepts, thresholds |
− | example: | + | example: [f1, y1-y9]; |
− | * frees a parameter at a default value or a specific starting value | + | * frees a parameter at a default value or a specific starting value |
− | example: | + | example: y1* y2*.5; |
− | @ fixes a parameter at a default value or a specific value | + | @ fixes a parameter at a default value or a specific value |
− | example: | + | example: y1@ y2@0; |
− | + | (number) constrains parameters to be equal | |
− | (number) constrains parameters to be equal | + | example: f1 ON x1 (1); f2 ON x2 (1); |
− | example: | + | variable$number label for the threshold of a variable |
− | + | variable#number label for nominal observed or categorical latent variable | |
− | variable$number label for the threshold of a variable | + | variable#1 label for censored or count inflation variable |
− | variable#number label for nominal observed or categorical latent variable | + | variable#number label for baseline hazard parameters |
− | variable#1 label for censored or count inflation variable | + | variable#number label for a latent class |
− | variable#number label for baseline hazard parameters | + | (name) label for a parameter |
− | variable#number label for a latent class | + | {list of variables}; refers to scale factors |
− | (name) label for a parameter | + | example: {y1-y9}; |
− | {list of variables}; refers to scale factors | + | | names and defines random effect variables |
− | example: | + | example: s | y1 ON x1; |
− | | names and defines random effect variables | + | AT short for measured at -- defines random effect variables |
− | example: s | y1 ON x1; | + | example: s | y1-y4 AT t1-t4; |
− | AT short for measured at -- defines random effect variables | + | XWITH defines interactions between variables; |
− | example: s | y1-y4 AT t1-t4; | + | MODEL INDIRECT: describes the relationships for which indirect and total effects are requested |
− | XWITH defines interactions between variables; | + | IND describes a specific indirect effect or a set of indirect effects when there is no moderation; |
− | MODEL INDIRECT: describes the relationships for which indirect and total effects are requested | + | VIA describes a set of indirect effects that includes specific mediators; |
− | + | MOD describes a specific indirect effect when there is moderation; | |
− | + | MODEL CONSTRAINT: describes linear and non-linear constraints on parameters | |
− | + | NEW assigns labels to parameters not in the analysis model; | |
− | + | DO describes a do loop or double do loop; | |
− | + | PLOT describes y-axis variables; | |
− | + | LOOP describes x-axis variables; | |
− | MODEL CONSTRAINT: describes linear and non-linear constraints on parameters | + | MODEL TEST: describes restrictions on the analysis model for the Wald test |
− | + | DO describes a do loop or double do loop; | |
− | + | MODEL PRIORS: specifies the prior distribution for the parameters | |
− | + | COVARIANCE assigns a prior to the covariance between two parameters; | |
− | + | DO describes a do loop or double do loop; | |
− | MODEL TEST: describes restrictions on the analysis model for the Wald test | + | DIFFERENCE assigns priors to differences between parameters; |
− | + | MODEL: describes the analysis model | |
− | MODEL PRIORS: specifies the prior distribution for the parameters | + | MODEL label: describes the group-specific model in multiple group analysis and the model for each categorical latent variable and combinations of categorical latent variables in mixture modeling |
− | + | MODEL: | |
− | + | %OVERALL% describes the overall part of a mixture model | |
− | + | %class label% describes the class-specific part of a mixture model | |
− | MODEL: describes the analysis model | + | MODEL: |
− | MODEL label: describes the group-specific model in multiple group analysis and the model for each categorical latent variable and combinations of categorical latent variables in mixture modeling | + | %WITHIN% describes the individual-level model |
− | MODEL: | + | %BETWEEN% describes the cluster-level model for a two-level model |
− | + | %BETWEEN label% describes the cluster-level model for a three-level or cross-classified model | |
− | + | MODEL POPULATION: describes the data generation model | |
− | MODEL: | + | MODEL POPULATION-label: describes the group-specific data generation model in multiple group analysis and the data generation model for each categorical latent variable and combinations of categorical latent variables in mixture modeling |
− | + | MODEL POPULATION: | |
− | + | %OVERALL% describes the overall data generation model for a mixture model | |
− | + | %class label% describes the class-specific data generation model for a mixture model | |
− | MODEL POPULATION: describes the data generation model | + | MODEL POPULATION: |
− | MODEL POPULATION-label: describes the group-specific data generation model in multiple group analysis and the data generation model for each categorical latent variable and combinations of categorical latent variables in mixture modeling | + | %WITHIN% describes the individual-level data generation model for a multilevel model |
− | MODEL POPULATION: | + | %BETWEEN% describes the cluster-level data generation model for a two-level model |
− | + | %BETWEEN label% describes the cluster-level data generation model for a three-level or cross-classified model | |
− | + | MODEL COVERAGE: describes the population parameter values for a Monte Carlo study | |
− | + | MODEL COVERAGE-label: describes the group-specific population parameter values in multiple group analysis and the population parameter values for each categorical latent variable and combinations of categorical latent variables in mixture modeling for a Monte Carlo study | |
− | MODEL POPULATION: | + | MODEL COVERAGE: |
− | + | %OVERALL% describes the overall population parameter values of a mixture model for a Monte Carlo study | |
− | + | %class label% describes the class-specific population parameter values of a mixture model | |
− | + | MODEL COVERAGE: | |
− | + | %WITHIN% describes the individual-level population parameter values for coverage | |
− | + | %BETWEEN% describes the cluster-level population parameter values for a two-level model for coverage | |
− | MODEL COVERAGE: describes the population parameter values for | + | %BETWEEN label% describes the cluster-level population parameter values for a three-level or cross-classified model for coverage |
− | MODEL COVERAGE-label: describes the group-specific population parameter values in multiple group analysis and the population parameter values for each categorical latent variable and combinations of categorical latent variables in mixture modeling for | + | MODEL MISSING: describes the missing data generation model for a Monte Carlostudy |
− | MODEL COVERAGE: | + | MODEL MISSING-label: describes the group-specific missing data generation model for aMonte Carlo study |
− | + | MODEL MISSING: | |
− | + | %OVERALL% describes the overall data generation model of a mixture model | |
− | + | %class label% describes the class-specific data generation model of a mixture model</pre> | |
− | MODEL COVERAGE: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | MODEL MISSING: describes the missing data generation model for | ||
− | MODEL MISSING-label: describes the group-specific missing data generation model for aMonte | ||
− | MODEL MISSING: | ||
− | |||
− |
2017年3月13日 (一) 07:55的版本
MODEL命令语法
MODEL: BY short for measured by -- defines latent variables example: f1 BY y1-y5; ON short for regressed on -- defines regression relationships example: f1 ON x1-x9; PON short for regressed on -- defines paired regression relationships example: f2 f3 PON f1 f2; WITH short for correlated with -- defines correlational relationships example: f1 WITH f2; PWITH short for correlated with -- defines paired correlational relationships example: f1 f2 f3 PWITH f4 f5 f6; list of variables; refers to variances and residual variances example: f1 y1-y9; [list of variables]; refers to means, intercepts, thresholds example: [f1, y1-y9]; * frees a parameter at a default value or a specific starting value example: y1* y2*.5; @ fixes a parameter at a default value or a specific value example: y1@ y2@0; (number) constrains parameters to be equal example: f1 ON x1 (1); f2 ON x2 (1); variable$number label for the threshold of a variable variable#number label for nominal observed or categorical latent variable variable#1 label for censored or count inflation variable variable#number label for baseline hazard parameters variable#number label for a latent class (name) label for a parameter {list of variables}; refers to scale factors example: {y1-y9}; | names and defines random effect variables example: s | y1 ON x1; AT short for measured at -- defines random effect variables example: s | y1-y4 AT t1-t4; XWITH defines interactions between variables; MODEL INDIRECT: describes the relationships for which indirect and total effects are requested IND describes a specific indirect effect or a set of indirect effects when there is no moderation; VIA describes a set of indirect effects that includes specific mediators; MOD describes a specific indirect effect when there is moderation; MODEL CONSTRAINT: describes linear and non-linear constraints on parameters NEW assigns labels to parameters not in the analysis model; DO describes a do loop or double do loop; PLOT describes y-axis variables; LOOP describes x-axis variables; MODEL TEST: describes restrictions on the analysis model for the Wald test DO describes a do loop or double do loop; MODEL PRIORS: specifies the prior distribution for the parameters COVARIANCE assigns a prior to the covariance between two parameters; DO describes a do loop or double do loop; DIFFERENCE assigns priors to differences between parameters; MODEL: describes the analysis model MODEL label: describes the group-specific model in multiple group analysis and the model for each categorical latent variable and combinations of categorical latent variables in mixture modeling MODEL: %OVERALL% describes the overall part of a mixture model %class label% describes the class-specific part of a mixture model MODEL: %WITHIN% describes the individual-level model %BETWEEN% describes the cluster-level model for a two-level model %BETWEEN label% describes the cluster-level model for a three-level or cross-classified model MODEL POPULATION: describes the data generation model MODEL POPULATION-label: describes the group-specific data generation model in multiple group analysis and the data generation model for each categorical latent variable and combinations of categorical latent variables in mixture modeling MODEL POPULATION: %OVERALL% describes the overall data generation model for a mixture model %class label% describes the class-specific data generation model for a mixture model MODEL POPULATION: %WITHIN% describes the individual-level data generation model for a multilevel model %BETWEEN% describes the cluster-level data generation model for a two-level model %BETWEEN label% describes the cluster-level data generation model for a three-level or cross-classified model MODEL COVERAGE: describes the population parameter values for a Monte Carlo study MODEL COVERAGE-label: describes the group-specific population parameter values in multiple group analysis and the population parameter values for each categorical latent variable and combinations of categorical latent variables in mixture modeling for a Monte Carlo study MODEL COVERAGE: %OVERALL% describes the overall population parameter values of a mixture model for a Monte Carlo study %class label% describes the class-specific population parameter values of a mixture model MODEL COVERAGE: %WITHIN% describes the individual-level population parameter values for coverage %BETWEEN% describes the cluster-level population parameter values for a two-level model for coverage %BETWEEN label% describes the cluster-level population parameter values for a three-level or cross-classified model for coverage MODEL MISSING: describes the missing data generation model for a Monte Carlostudy MODEL MISSING-label: describes the group-specific missing data generation model for aMonte Carlo study MODEL MISSING: %OVERALL% describes the overall data generation model of a mixture model %class label% describes the class-specific data generation model of a mixture model