“Mplus MODEL”的版本间的差异

来自OBHRM百科
跳转至: 导航搜索
 
(未显示同一用户的1个中间版本)
第1行: 第1行:
 
==MODEL命令语法==
 
==MODEL命令语法==
 
<pre>MODEL:       
 
<pre>MODEL:       
BY                          short for measured by -- defines latent variables
+
BY                          short for measured by -- defines latent variables. example:  f1 BY y1-y5;
                            example:  f1 BY y1-y5;
+
ON                          short for regressed on -- defines regression relationships. example:  f1 ON x1-x9;
ON                          short for regressed on -- defines regression relationships
+
PON                          short for regressed on -- defines paired regression relationships. example:  f2  f3 PON f1 f2;
                            example:  f1 ON x1-x9;
+
WITH                        short for correlated with -- defines correlational relationships.example:  f1 WITH f2;
PON                          short for regressed on -- defines paired regression relationships
+
PWITH                        short for correlated with -- defines paired correlational relationships. example:  f1 f2 f3 PWITH f4 f5 f6;
                            example:  f2  f3 PON f1 f2;
+
list of variables;          refers to variances and residual variances. example:  f1 y1-y9;
WITH                        short for correlated with -- defines correlational relationships
+
[list of variables];        refers to means, intercepts, thresholds. example:  [f1, y1-y9];
                            example:  f1 WITH f2;
+
*                            frees a parameter at a default value or a specific starting value. example:  y1* y2*.5;
PWITH                        short for correlated with -- defines paired correlational relationships
+
@                            fixes a parameter at a default value or a specific value. example:  y1@ y2@0;
                            example:  f1 f2 f3 PWITH f4 f5 f6;
+
(number)                    constrains parameters to be equal. example:  f1 ON x1 (1); f2 ON x2 (1);
list of variables;          refers to variances and residual variances
 
                            example:  f1 y1-y9;
 
[list of variables];        refers to means, intercepts, thresholds
 
                            example:  [f1, y1-y9];
 
*                            frees a parameter at a default value or a specific starting value
 
                            example:  y1* y2*.5;
 
@                            fixes a parameter at a default value or a specific value
 
                            example:  y1@ y2@0;
 
(number)                    constrains parameters to be equal
 
                            example:  f1 ON x1 (1); f2 ON x2 (1);
 
 
variable$number              label for the threshold of a variable
 
variable$number              label for the threshold of a variable
 
variable#number              label for nominal observed or categorical latent variable
 
variable#number              label for nominal observed or categorical latent variable
第27行: 第17行:
 
variable#number              label for a latent class
 
variable#number              label for a latent class
 
(name)                      label for a parameter
 
(name)                      label for a parameter
{list of variables};        refers to scale factors
+
{list of variables};        refers to scale factors. example:  {y1-y9};
                            example:  {y1-y9};
+
|                            names and defines random effect variables. example: s | y1 ON x1;
|                            names and defines random effect variables
+
AT                          short for measured at -- defines random effect variables. example: s | y1-y4 AT t1-t4;
                            example: s | y1 ON x1;
 
AT                          short for measured at -- defines random effect variables
 
                            example: s | y1-y4 AT t1-t4;
 
 
XWITH                        defines interactions between variables;
 
XWITH                        defines interactions between variables;
 
MODEL INDIRECT:              describes the relationships for which indirect and total effects are requested
 
MODEL INDIRECT:              describes the relationships for which indirect and total effects are requested
第52行: 第39行:
 
MODEL label:                describes the group-specific model in multiple group analysis and the model for each categorical latent variable and combinations of categorical latent variables in mixture modeling
 
MODEL label:                describes the group-specific model in multiple group analysis and the model for each categorical latent variable and combinations of categorical latent variables in mixture modeling
 
MODEL:       
 
MODEL:       
     %OVERALL%               describes the overall part of a mixture model
+
     %OVERALL%             describes the overall part of a mixture model
     %class label%           describes the class-specific part of a mixture model
+
     %class label%         describes the class-specific part of a mixture model
 
MODEL:           
 
MODEL:           
     %WITHIN%               describes the individual-level model
+
     %WITHIN%               describes the individual-level model
     %BETWEEN%               describes the cluster-level model for a two-level model
+
     %BETWEEN%             describes the cluster-level model for a two-level model
     %BETWEEN label%         describes the cluster-level model for a three-level or cross-classified model
+
     %BETWEEN label%       describes the cluster-level model for a three-level or cross-classified model
 
MODEL POPULATION:            describes the data generation model
 
MODEL POPULATION:            describes the data generation model
 
MODEL POPULATION-label:      describes the group-specific data generation model in multiple group analysis and the data generation model for each categorical latent variable and combinations of categorical latent variables in mixture modeling
 
MODEL POPULATION-label:      describes the group-specific data generation model in multiple group analysis and the data generation model for each categorical latent variable and combinations of categorical latent variables in mixture modeling
 
MODEL POPULATION:       
 
MODEL POPULATION:       
     %OVERALL%               describes the overall data generation model for a  mixture model
+
     %OVERALL%             describes the overall data generation model for a  mixture model
     %class label%           describes the class-specific data generation model for a mixture model               
+
     %class label%         describes the class-specific data generation model for a mixture model               
 
MODEL POPULATION:       
 
MODEL POPULATION:       
     %WITHIN%               describes the individual-level data generation model for a multilevel model
+
     %WITHIN%               describes the individual-level data generation model for a multilevel model
     %BETWEEN%               describes the cluster-level data generation model for a two-level model
+
     %BETWEEN%             describes the cluster-level data generation model for a two-level model
     %BETWEEN label%         describes the cluster-level data generation model for a three-level or cross-classified model             
+
     %BETWEEN label%       describes the cluster-level data generation model for a three-level or cross-classified model             
 
MODEL COVERAGE:              describes the population parameter values for a Monte Carlo study
 
MODEL COVERAGE:              describes the population parameter values for a Monte Carlo study
 
MODEL COVERAGE-label:        describes the group-specific population parameter values in multiple group analysis and the population parameter values for each categorical latent variable and combinations of categorical latent variables in mixture modeling for a Monte Carlo study
 
MODEL COVERAGE-label:        describes the group-specific population parameter values in multiple group analysis and the population parameter values for each categorical latent variable and combinations of categorical latent variables in mixture modeling for a Monte Carlo study
 
MODEL COVERAGE:       
 
MODEL COVERAGE:       
     %OVERALL%               describes the overall population parameter values of a mixture model for a Monte Carlo study
+
     %OVERALL%             describes the overall population parameter values of a mixture model for a Monte Carlo study
     %class label%           describes the class-specific population parameter values of a mixture model     
+
     %class label%         describes the class-specific population parameter values of a mixture model     
 
MODEL COVERAGE:       
 
MODEL COVERAGE:       
     %WITHIN%               describes the individual-level population parameter values for coverage
+
     %WITHIN%               describes the individual-level population parameter values for coverage
     %BETWEEN%               describes the cluster-level population parameter values for a two-level model for coverage
+
     %BETWEEN%             describes the cluster-level population parameter values for a two-level model for coverage
     %BETWEEN label%         describes the cluster-level population parameter values for a three-level or cross-classified model for coverage             
+
     %BETWEEN label%       describes the cluster-level population parameter values for a three-level or cross-classified model for coverage             
 
MODEL MISSING:              describes the missing data generation model for a Monte Carlostudy
 
MODEL MISSING:              describes the missing data generation model for a Monte Carlostudy
 
MODEL MISSING-label:        describes the group-specific missing data generation model for aMonte Carlo study
 
MODEL MISSING-label:        describes the group-specific missing data generation model for aMonte Carlo study
 
MODEL MISSING:         
 
MODEL MISSING:         
     %OVERALL%               describes the overall data generation model of a mixture model
+
     %OVERALL%             describes the overall data generation model of a mixture model
     %class label%           describes the class-specific data generation model of a mixture model</pre>
+
     %class label%         describes the class-specific data generation model of a mixture model</pre>

2017年3月13日 (一) 08:01的最新版本

MODEL命令语法

MODEL:      
BY                           short for measured by -- defines latent variables. example:  f1 BY y1-y5;
ON                           short for regressed on -- defines regression relationships. example:  f1 ON x1-x9;
PON                          short for regressed on -- defines paired regression relationships. example:  f2  f3 PON f1 f2;
WITH                         short for correlated with -- defines correlational relationships.example:  f1 WITH f2;
PWITH                        short for correlated with -- defines paired correlational relationships. example:  f1 f2 f3 PWITH f4 f5 f6;
list of variables;           refers to variances and residual variances. example:  f1 y1-y9;
[list of variables];         refers to means, intercepts, thresholds. example:  [f1, y1-y9];
*                            frees a parameter at a default value or a specific starting value. example:  y1* y2*.5;
@                            fixes a parameter at a default value or a specific value. example:  y1@ y2@0;
(number)                     constrains parameters to be equal. example:  f1 ON x1 (1); f2 ON x2 (1);
variable$number              label for the threshold of a variable
variable#number              label for nominal observed or categorical latent variable
variable#1                   label for censored or count inflation variable
variable#number              label for baseline hazard parameters
variable#number              label for a latent class
(name)                       label for a parameter
{list of variables};         refers to scale factors. example:  {y1-y9};
|                            names and defines random effect variables. example: s | y1 ON x1;
AT                           short for measured at -- defines random effect variables. example: s | y1-y4 AT t1-t4;
XWITH                        defines interactions between variables;
MODEL INDIRECT:              describes the relationships for which indirect and total effects are requested
      IND                    describes a specific indirect effect or a set of indirect effects when there is no moderation;
      VIA                    describes  a set of indirect effects that includes specific mediators;
      MOD                    describes a specific indirect effect when there is moderation;
MODEL CONSTRAINT:            describes linear and non-linear constraints on parameters
     NEW                     assigns labels to parameters not in the analysis model;
     DO                      describes a do loop or double do loop;
     PLOT                    describes y-axis variables;
     LOOP                    describes x-axis variables;
MODEL TEST:                  describes restrictions on the analysis model for the Wald test
     DO                      describes a do loop or double do loop;
MODEL PRIORS:                specifies the prior distribution for the parameters
     COVARIANCE              assigns a prior to the covariance between two parameters;
     DO                      describes a do loop or double do loop;
     DIFFERENCE              assigns priors to differences between parameters;
MODEL:                       describes the analysis model
MODEL label:                 describes the group-specific model in multiple group analysis and the model for each categorical latent variable and combinations of categorical latent variables in mixture modeling
MODEL:       
     %OVERALL%              describes the overall part of a mixture model
     %class label%          describes the class-specific part of a mixture model
MODEL:          
     %WITHIN%               describes the individual-level model
     %BETWEEN%              describes the cluster-level model for a two-level model
     %BETWEEN label%        describes the cluster-level model for a three-level or cross-classified model
MODEL POPULATION:            describes the data generation model
MODEL POPULATION-label:      describes the group-specific data generation model in multiple group analysis and the data generation model for each categorical latent variable and combinations of categorical latent variables in mixture modeling
MODEL POPULATION:      
     %OVERALL%              describes the overall data generation model for a  mixture model
     %class label%          describes the class-specific data generation model for a mixture model              
MODEL POPULATION:      
     %WITHIN%               describes the individual-level data generation model for a multilevel model
     %BETWEEN%              describes the cluster-level data generation model for a two-level model
     %BETWEEN label%        describes the cluster-level data generation model for a three-level or cross-classified model             
MODEL COVERAGE:              describes the population parameter values for a Monte Carlo study
MODEL COVERAGE-label:        describes the group-specific population parameter values in multiple group analysis and the population parameter values for each categorical latent variable and combinations of categorical latent variables in mixture modeling for a Monte Carlo study
MODEL COVERAGE:      
     %OVERALL%              describes the overall population parameter values of a mixture model for a Monte Carlo study
     %class label%          describes the class-specific population parameter values of a mixture model     
MODEL COVERAGE:      
     %WITHIN%               describes the individual-level population parameter values for coverage
     %BETWEEN%              describes the cluster-level population parameter values for a two-level model for coverage
     %BETWEEN label%        describes the cluster-level population parameter values for a three-level or cross-classified model for coverage            
MODEL MISSING:               describes the missing data generation model for a Monte Carlostudy
MODEL MISSING-label:         describes the group-specific missing data generation model for aMonte Carlo study
MODEL MISSING:        
     %OVERALL%              describes the overall data generation model of a mixture model
     %class label%          describes the class-specific data generation model of a mixture model