“2021MetaPOQ”的版本间的差异

来自OBHRM百科
跳转至: 导航搜索
第5行: 第5行:
  
 
==文章数据==
 
==文章数据==
 +
[http://www.obhrm.net/data/2021MetaPOQ.xlsx 下载]
  
 
==文章R代码==
 
==文章R代码==

2021年5月13日 (四) 08:28的版本

文章信息

杨伟文 李超平. 资质过剩感对个体绩效的作用效果及机制:基于情绪-认知加工系统与文化情境的元分析研究. 心理学报, 53(5),527-554

全文下载:http://journal.psych.ac.cn/xlxb/CN/10.3724/SP.J.1041.2021.00527

文章数据

下载

文章R代码

#加载安装包。如果没有安装,请自行安装。安装方法见:http://www.obhrm.net/index.php/R
library(psychmeta) 
library(tidyr)
library(magrittr)
library(dplyr)
library(tidyverse)
library(rio)
library(metaSEM)
library(plyr)
library(meta)
library(psych)

setwd("D:\\") #请将2021MetaPOQ.xlsx放在D盘根目录下,如果放在其他目录下,请在此做相应调整。

##################  全部数据准备  ######################
data <- import("2021MetaPOQ.xlsx")
correct_main <- correct_r(correction = c("meas", "uvdrr_x", "uvdrr_y", "uvirr_x",
                                         "uvirr_y", "bvdrr", "bvirr"), 
                          rxyi = data$rxy, ux = 1, uy = 1, 
                          rxx = data$rxx,
                          ryy = data$ryy, ux_observed = TRUE, uy_observed = TRUE,
                          rxx_restricted = TRUE, rxx_type = "alpha", k_items_x = NA,
                          ryy_restricted = TRUE, ryy_type = "alpha", k_items_y = NA,
                          sign_rxz = 1, sign_ryz = 1, n = NULL, conf_level = 0.95,
                          correct_bias = FALSE) 

data$rtp = correct_main[["correlations"]][["rtp"]] 

orig.data <- subset(data.frame(data, correct_main$correlations), rtp <1) 

# 此处获取研究样本信息
k.article <- length(unique(paste(orig.data$author, orig.data$title)))
k.inde.sample <- length(unique(orig.data$id))
k.eff.size <- nrow(unique(data.frame(orig.data$title, orig.data$rxy, orig.data$x, orig.data$y)))
sample.size <- unique(data.frame(orig.data$title, orig.data$n))
n.sample.size <- as.vector(sample.size$orig.data.n)%>%sum
descr <- data.frame(c("文献", "独立样本", "效应值", "样本规模"),
  c(k.article, k.inde.sample, k.eff.size, n.sample.size))%>%
  set_colnames(c("类型", "数量"))
descr

#### 1………………直接效应分析………………####
#### 发表偏倚检验 ####
d <- subset(orig.data, orig.data$x.frame.all == "资质过剩感")
d$zr <- 0.5*log((1+d$rxy)/(1-d$rxy))
zr <- split(d$zr, d$y.coding.t)
n <- split(d$n, d$y.coding.t)
t <- list()
for (i in 1:length(n)){
  t[[i]] <- zr[[i]]*sqrt(n[[i]]-3)
  i = i + 1}
nfs <- vector()
for (i in 1:length(zr)){
  nfs[[i]] <- abs(round(sum(t[[i]])^2/2.706 - length(zr[[i]])))
  i = i + 1}
final.nfs = data.frame(names(zr),nfs) %>% set_colnames(c("name", "nfs"))

zr.t <- split(d$zr, d$y.frame.all)
n.t <- split(d$n, d$y.frame.all)
for (i in 1:length(n.t)){
  t[[i]] <- zr.t[[i]]*sqrt(n.t[[i]]-3)
  i = i + 1}
nfs <- vector()
for (i in 1:length(zr.t)){
  nfs[[i]] <- abs(round(sum(t[[i]])^2/2.706 - length(zr.t[[i]])))
  i = i + 1}
final.nfs.t = data.frame(names(zr.t),nfs)%>% set_colnames(c("name", "nfs"))
nfs = rbind(final.nfs, final.nfs.t)

order <- data.frame(c("消极情绪", "愤怒", "无聊",
                      "积极自我概念", "一般效能感", "其他效能感", "一般自尊", "基于组织的自尊",
                      "消极行为", "反生产行为", "离职意愿", 
                      "积极行为", "创新", "工作重塑", "建言", "前瞻行为",
                      "知识共享", "组织公民行为", "任务绩效")) %>% set_colnames("order") 
t.nfs = left_join(order, nfs, by=c("order"="name"))

#### 主要变量直接效应 ####
main_r <- ma_r(rxyi = orig.data$rxy, n = orig.data$n,
               sample_id = orig.data$id, citekey = orig.data$id,
               construct_x = orig.data$x.frame.all,
               construct_y = orig.data$y.frame.all,
               moderators = orig.data$y.coding.t,
               data = orig.data) 
main_rho <- ma_r(rxyi = orig.data$rtp, n = orig.data$n,
                 sample_id = orig.data$id, citekey = orig.data$id,
                 construct_x = orig.data$x.frame.all,
                 construct_y = orig.data$y.frame.all,
                 moderators = orig.data$y.coding.t,
                 data = orig.data)

# 此处获取 %Var 信息
hetero <- heterogeneity(main_rho)%>%get_heterogeneity
data.hetero = data.frame(matrix(NA, nrow = length(hetero), ncol=2))
names(data.hetero) = c("id","var") 
data.hetero$id = colnames(sapply(hetero, function(x) x[[1]]))
data.hetero$var = sapply(hetero, function(x) x[[1]]$percent_var_accounted[[1]])

#### 主效应分析表制作 ####
main_r <- main_r %>% summary %>% get_metatab
main_rho <- main_rho %>% summary %>% get_metatab
maineffects <- data.frame(main_r$analysis_id,
                          main_r$construct_x,
                          main_r$construct_y,
                          main_r$`orig.data$y.coding.t`,
                          main_r$k, main_r$N,
                          round(cbind(main_r$mean_r,  main_r$sd_r,
                                      main_rho$mean_r,main_rho$sd_r),2),
                          paste("[", round(main_rho$CI_LL_95, 2), ", ",
                                round(main_rho$CI_UL_95, 2), "]"),
                          paste("[", round(main_rho$CR_LL_80, 2), ", ",
                                round(main_rho$CR_UL_80, 2),"]"),
                          data.hetero) %>%
  set_colnames(c("id", "x", "y", "dim", "k", "n",
                 "r", "SD_r","rho", "SD_rho", 
                 "95% CI", "80% CV",
                 "var%"))
main.poq <- subset(maineffects, maineffects$x == "资质过剩感" &
                     maineffects$y != "个人工作匹配"&
                     maineffects$y != "个人组织匹配"&
                     maineffects$y != "健康"&
                     maineffects$y != "对工作的态度"&
                     maineffects$y != "对组织的态度")
main.poq$`5k+10` = main.poq$k * 5 + 10

maineffects.poq = left_join(main.poq, t.nfs, by=c("dim"="order")) %>% 
  left_join(t.nfs, by=c("y"="order")) %>% unique

mainpoq <- data.frame(maineffects.poq[, c(3:7,9:12)], 
                      round(unlist(maineffects.poq$`var%`),2),
                      maineffects.poq[, 14:16])%>%set_colnames(
                      c("y", "dim", "k", "n", "r", "rho", 
                        "SD_rho", "95%CI", "80%CV",
                        "var", "5k+10", "nfs.dim", "nfs.all"))

write.csv(mainpoq, file = "Table1_poq直接效应及发表偏倚检验.csv")  #表1 

maineffects$word <- paste("(", maineffects$r,", ", maineffects$rho, ")","\n",
                          "(", maineffects$k,", ", maineffects$n, ")","\n",
                          maineffects$`95% CI`,"\n",
                          maineffects$`80% CV`)

#### 2………………中介效应检验………………####
#### 数据准备:全模型数据 ####
varnames <- c("POQ","NE", "PS", "NB", "PB", "JP")
poq.ne <- subset(maineffects, maineffects$x == "资质过剩感" &
                              maineffects$y == "消极情绪" &
                              maineffects$dim == "All Levels")
poq.ps <- subset(maineffects, maineffects$x == "资质过剩感" &
                              maineffects$y == "积极自我概念" &
                              maineffects$dim == "All Levels")
poq.nb <- subset(maineffects, maineffects$x == "资质过剩感" &
                              maineffects$y == "消极行为" &
                              maineffects$dim == "All Levels")
poq.pb <- subset(maineffects, maineffects$x == "资质过剩感" &
                              maineffects$y == "积极行为" &
                              maineffects$dim == "All Levels")
poq.jp <- subset(maineffects, maineffects$x == "资质过剩感" &
                              maineffects$y == "任务绩效" &
                              maineffects$dim == "All Levels")
ne.ps <- subset(maineffects, (maineffects$x == "消极情绪" &
                              maineffects$y == "积极自我概念" &
                              maineffects$dim == "All Levels")|
                             (maineffects$y == "消极情绪" &
                              maineffects$x == "积极自我概念" &
                              maineffects$dim == "All Levels"))
ne.nb <- subset(maineffects, (maineffects$x == "消极情绪" &
                              maineffects$y == "消极行为" &
                              maineffects$dim == "All Levels")|
                             (maineffects$y == "消极情绪" &
                              maineffects$x == "消极行为" &
                              maineffects$dim == "All Levels"))
ne.pb <- subset(maineffects, (maineffects$x == "消极情绪" &
                              maineffects$y == "积极行为" &
                              maineffects$dim == "All Levels")|
                             (maineffects$y == "消极情绪" &
                              maineffects$x == "积极行为" &
                              maineffects$dim == "All Levels")) 
ne.jp <- subset(maineffects, (maineffects$x == "消极情绪" &
                              maineffects$y == "任务绩效" &
                              maineffects$dim == "All Levels")|
                             (maineffects$y == "消极情绪" &
                              maineffects$x == "任务绩效" &
                              maineffects$dim == "All Levels")) 
ps.nb <- subset(maineffects, (maineffects$x == "积极自我概念" &
                              maineffects$y == "消极行为" &
                              maineffects$dim == "All Levels")|
                             (maineffects$y == "积极自我概念" &
                              maineffects$x == "消极行为" &
                              maineffects$dim == "All Levels")) 
ps.pb <- subset(maineffects, (maineffects$x == "积极自我概念" &
                              maineffects$y == "积极行为" &
                              maineffects$dim == "All Levels")|
                             (maineffects$y == "积极自我概念" &
                              maineffects$x == "积极行为" &
                              maineffects$dim == "All Levels")) 
ps.jp <- subset(maineffects, (maineffects$x == "积极自我概念" &
                              maineffects$y == "任务绩效" &
                              maineffects$dim == "All Levels")|
                             (maineffects$y == "积极自我概念" &
                              maineffects$x == "任务绩效" &
                              maineffects$dim == "All Levels")) 
nb.pb <- subset(maineffects, (maineffects$x == "消极行为" &
                              maineffects$y == "积极行为" &
                              maineffects$dim == "All Levels")|
                             (maineffects$y == "消极行为" &
                              maineffects$x == "积极行为" &
                              maineffects$dim == "All Levels")) 
nb.jp <- subset(maineffects, (maineffects$x == "消极行为" &
                              maineffects$y == "任务绩效" &
                              maineffects$dim == "All Levels")|
                             (maineffects$y == "消极行为" &
                              maineffects$x == "任务绩效" &
                              maineffects$dim == "All Levels")) 
pb.jp <- subset(maineffects, (maineffects$x == "积极行为" &
                              maineffects$y == "任务绩效" &
                              maineffects$dim == "All Levels")|
                             (maineffects$y == "积极行为" &
                              maineffects$x == "任务绩效" &
                              maineffects$dim == "All Levels")) 
all.matrix <- vec2symMat(c(poq.ne$rho, poq.ps$rho, poq.nb$rho, poq.pb$rho, poq.jp$rho,
                           ne.ps$rho, ne.nb$rho, ne.pb$rho, ne.jp$rho, 
                           ps.nb$rho, ps.pb$rho, ps.jp$rho,
                           nb.pb$rho, nb.jp$rho, 
                           pb.jp$rho), 
                         diag = FALSE, byrow = FALSE) %>%
                         set_colnames(varnames) %>%
                         set_rownames(varnames)
all_dat <- list(all.matrix)

main_in_r <- ma_r(rxyi = orig.data$rxy, n = orig.data$n,
                  sample_id = orig.data$id, citekey = orig.data$id,
                  construct_x = orig.data$x.frame.all,
                  construct_y = orig.data$y.frame.all,
                  moderators = orig.data$indi,
                  data = orig.data)
main_in_rho <- ma_r(rxyi = orig.data$rtp, n = orig.data$n,
                    sample_id = orig.data$id, citekey = orig.data$id,
                    construct_x = orig.data$x.frame.all,
                    construct_y = orig.data$y.frame.all,
                    moderators = orig.data$indi,
                    data = orig.data) 
hetero_in <- heterogeneity(main_in_rho)%>%get_heterogeneity
data.hetero_in = data.frame(matrix(NA, nrow = length(hetero_in), ncol=2))
names(data.hetero_in) = c("id","var") 
data.hetero_in$id = colnames(sapply(hetero_in, function(x) x[[1]]))
data.hetero_in$var = sapply(hetero_in, function(x) x[[1]]$percent_var_accounted[[1]])
main_in_r <- main_in_r %>% summary %>% get_metatab %>% na.omit
main_in_rho <- main_in_rho %>% summary %>% get_metatab %>% na.omit
main_indi <- data.frame(main_in_r$analysis_id,
                        main_in_r$construct_x,
                        main_in_r$construct_y,
                        main_in_r$`orig.data$indi`,
                        main_in_r$k, main_in_r$N,
                        round(cbind(main_in_r$mean_r,  main_in_r$sd_r,
                                    main_in_rho$mean_r,main_in_rho$sd_r),2),
                        paste("[", round(main_in_rho$CI_LL_95, 2), ", ",
                              round(main_in_rho$CI_UL_95, 2), "]"),
                        paste("[", round(main_in_rho$CR_LL_80, 2), ", ",
                              round(main_in_rho$CR_UL_80, 2),"]")) %>%
                        set_colnames(c("id", "x", "y", "indi", "k", "n",
                                       "r", "SD_r","rho", "SD_rho", 
                                       "95% CI", "80% CV"))

#### 数据准备:低个人主义(高集体主义)数据 ####
poq.ne.l <- subset(main_indi, main_indi$x == "资质过剩感" &
                              main_indi$y == "消极情绪" &
                              main_indi$indi == "L")
poq.ps.l <- subset(main_indi, main_indi$x == "资质过剩感" &
                              main_indi$y == "积极自我概念" &
                              main_indi$indi == "L")
poq.nb.l <- subset(main_indi, main_indi$x == "资质过剩感" &
                              main_indi$y == "消极行为" &
                              main_indi$indi == "L")
poq.pb.l <- subset(main_indi, main_indi$x == "资质过剩感" &
                              main_indi$y == "积极行为" &
                              main_indi$indi == "L")
poq.jp.l <- subset(main_indi, main_indi$x == "资质过剩感" &
                              main_indi$y == "任务绩效" &
                              main_indi$indi == "L")
ne.ps.l <- subset(main_indi, (main_indi$x == "消极情绪" &
                              main_indi$y == "积极自我概念" &
                              main_indi$indi == "L")|
                             (main_indi$y == "消极情绪" &
                              main_indi$x == "积极自我概念" &
                              main_indi$indi == "L"))
ne.nb.l <- subset(main_indi, (main_indi$x == "消极情绪" &
                              main_indi$y == "消极行为" &
                              main_indi$indi == "L")|
                             (main_indi$y == "消极情绪" &
                              main_indi$x == "消极行为" &
                              main_indi$indi == "L"))
ne.pb.l <- subset(main_indi, (main_indi$x == "消极情绪" &
                              main_indi$y == "积极行为" &
                              main_indi$indi == "L")|
                             (main_indi$y == "消极情绪" &
                              main_indi$x == "积极行为" &
                              main_indi$indi == "L")) 
ne.jp.l <- subset(main_indi, (main_indi$x == "消极情绪" &
                              main_indi$y == "任务绩效" &
                              main_indi$indi == "L")|
                             (main_indi$y == "消极情绪" &
                              main_indi$x == "任务绩效" &
                              main_indi$indi == "L")) 
ps.nb.l <- subset(main_indi, (main_indi$x == "积极自我概念" &
                              main_indi$y == "消极行为" &
                              main_indi$indi == "L")|
                             (main_indi$y == "积极自我概念" &
                              main_indi$x == "消极行为" &
                              main_indi$indi == "L")) 
ps.pb.l <- subset(main_indi, (main_indi$x == "积极自我概念" &
                              main_indi$y == "积极行为" &
                              main_indi$indi == "L")|
                             (main_indi$y == "积极自我概念" &
                              main_indi$x == "积极行为" &
                              main_indi$indi == "L")) 
ps.jp.l <- subset(main_indi, (main_indi$x == "积极自我概念" &
                              main_indi$y == "任务绩效" &
                              main_indi$indi == "L")|
                             (main_indi$y == "积极自我概念" &
                              main_indi$x == "任务绩效" &
                              main_indi$indi == "L")) 
nb.pb.l <- subset(main_indi, (main_indi$x == "消极行为" &
                              main_indi$y == "积极行为" &
                              main_indi$indi == "L")|
                             (main_indi$y == "消极行为" &
                              main_indi$x == "积极行为" &
                              main_indi$indi == "L")) 
nb.jp.l <- subset(main_indi, (main_indi$x == "消极行为" &
                              main_indi$y == "任务绩效" &
                              main_indi$indi == "L")|
                             (main_indi$y == "消极行为" &
                              main_indi$x == "任务绩效" &
                              main_indi$indi == "L")) 
pb.jp.l <- subset(main_indi, (main_indi$x == "积极行为" &
                              main_indi$y == "任务绩效" &
                              main_indi$indi == "L")|
                             (main_indi$y == "积极行为" &
                              main_indi$x == "任务绩效" &
                              main_indi$indi == "L")) 
all.matrix.l <- vec2symMat(c(poq.ne.l$rho, poq.ps.l$rho, poq.nb.l$rho, poq.pb.l$rho, poq.jp.l$rho,
                             ne.ps.l$rho, ne.nb.l$rho, ne.pb.l$rho, ne.jp.l$rho, 
                             ps.nb.l$rho, ps.pb.l$rho, ps.jp.l$rho,
                             nb.pb.l$rho, nb.jp.l$rho, 
                             pb.jp.l$rho), 
                           diag = FALSE, byrow = FALSE) %>%
  set_colnames(varnames) %>%
  set_rownames(varnames)
all_dat.l <- list(all.matrix.l)

#### 数据准备:高个人主义(低集体主义)数据 ####
poq.ne.h <- subset(main_indi, main_indi$x == "资质过剩感" &
                     main_indi$y == "消极情绪" &
                     main_indi$indi == "H")
poq.ps.h <- subset(main_indi, main_indi$x == "资质过剩感" &
                     main_indi$y == "积极自我概念" &
                     main_indi$indi == "H")
poq.nb.h <- subset(main_indi, main_indi$x == "资质过剩感" &
                     main_indi$y == "消极行为" &
                     main_indi$indi == "H")
poq.pb.h <- subset(main_indi, x == "资质过剩感" &
                     main_indi$y == "积极行为" &
                     main_indi$indi == "H")
poq.jp.h <- subset(main_indi, main_indi$x == "资质过剩感" &
                     main_indi$y == "任务绩效" &
                     main_indi$indi == "H")
ne.ps.h <- subset(main_indi, (main_indi$x == "消极情绪" &
                              main_indi$y == "积极自我概念" &
                              main_indi$indi == "H")|
                             (main_indi$y == "消极情绪" &
                              main_indi$x == "积极自我概念" &
                              main_indi$indi == "H"))
ne.nb.h <- subset(main_indi, (main_indi$x == "消极情绪" &
                              main_indi$y == "消极行为" &
                              main_indi$indi == "H")|
                             (main_indi$y == "消极情绪" &
                              main_indi$x == "消极行为" &
                              main_indi$indi == "H"))
ne.pb.h <- subset(main_indi, (main_indi$x == "消极情绪" &
                              main_indi$y == "积极行为" &
                              main_indi$indi == "H")|
                             (main_indi$y == "消极情绪" &
                              main_indi$x == "积极行为" &
                              main_indi$indi == "H")) 
ne.jp.h <- subset(main_indi, (main_indi$x == "消极情绪" &
                              main_indi$y == "任务绩效" &
                              main_indi$indi == "H")|
                             (main_indi$y == "消极情绪" &
                              main_indi$x == "任务绩效" &
                              main_indi$indi == "H")) 
ps.nb.h <- subset(main_indi, (main_indi$x == "积极自我概念" &
                              main_indi$y == "消极行为" &
                              main_indi$indi == "H")|
                             (main_indi$y == "积极自我概念" &
                              main_indi$x == "消极行为" &
                              main_indi$indi == "H")) 
ps.pb.h <- subset(main_indi, (main_indi$x == "积极自我概念" &
                              main_indi$y == "积极行为" &
                              main_indi$indi == "H")|
                             (main_indi$y == "积极自我概念" &
                              main_indi$x == "积极行为" &
                              main_indi$indi == "H")) 
ps.jp.h <- subset(main_indi, (main_indi$x == "积极自我概念" &
                              main_indi$y == "任务绩效" &
                              main_indi$indi == "H")|
                             (main_indi$y == "积极自我概念" &
                              main_indi$x == "任务绩效" &
                              main_indi$indi == "H")) 
nb.pb.h <- subset(main_indi, (main_indi$x == "消极行为" &
                              main_indi$y == "积极行为" &
                              main_indi$indi == "H")|
                             (main_indi$y == "消极行为" &
                              main_indi$x == "积极行为" &
                              main_indi$indi == "H")) 
nb.jp.h <- subset(main_indi, (main_indi$x == "消极行为" &
                              main_indi$y == "任务绩效" &
                              main_indi$indi == "H")|
                             (main_indi$y == "消极行为" &
                              main_indi$x == "任务绩效" &
                              main_indi$indi == "H")) 
pb.jp.h <- subset(main_indi, (main_indi$x == "积极行为" &
                              main_indi$y == "任务绩效" &
                              main_indi$indi == "H")|
                             (main_indi$y == "积极行为" &
                              main_indi$x == "任务绩效" &
                              main_indi$indi == "H")) 
all.matrix.h <- vec2symMat(c(poq.ne.h$rho, poq.ps.h$rho, poq.nb.h$rho, poq.pb.h$rho, poq.jp.h$rho,
                             ne.ps.h$rho, ne.nb.h$rho, ne.pb.h$rho, ne.jp.h$rho, 
                             ps.nb.h$rho, ps.pb.h$rho, ps.jp.h$rho,
                             nb.pb.h$rho, nb.jp.h$rho, 
                             pb.jp.h$rho), 
                           diag = FALSE, byrow = FALSE) %>%
                           set_colnames(varnames) %>%
                           set_rownames(varnames)
all_dat.h <- list(all.matrix.h)

#### 调和平均数 ####
all_n <- c(poq.ne$n, poq.ps$n, poq.nb$n, poq.pb$n, poq.jp$n,
           ne.ps$n, ne.nb$n, ne.pb$n, ne.jp$n, 
           ps.nb$n, ps.pb$n, ps.jp$n,
           nb.pb$n, nb.jp$n, 
           pb.jp$n) %>% harmonic.mean %>% round
n_l <- c(poq.ne.l$n, poq.ps.l$n, poq.nb.l$n, poq.pb.l$n, poq.jp.l$n,
         ne.ps.l$n, ne.nb.l$n, ne.pb.l$n, ne.jp.l$n, 
         ps.nb.l$n, ps.pb.l$n, ps.jp.l$n,
         nb.pb.l$n, nb.jp.l$n, 
         pb.jp.l$n) %>% harmonic.mean %>% round
n_h <- c(poq.ne.h$n, poq.ps.h$n, poq.nb.h$n, poq.pb.h$n, poq.jp.h$n,
         ne.ps.h$n, ne.nb.h$n, ne.pb.h$n, ne.jp.h$n, 
         ps.nb.h$n, ps.pb.h$n, ps.jp.h$n,
         nb.pb.h$n, nb.jp.h$n, 
         pb.jp.h$n) %>% harmonic.mean %>% round

####模型设置 ####
model_all <- 'NB ~  POQ + PS + NE
PB ~  POQ + PS + NE
JP ~  POQ + PS + NE

NE ~ POQ
PS ~ POQ

NE ~~ 1*NE
PS ~~ 1*PS
POQ ~~ 1*POQ

NE ~~ 0.1*PS

NB ~~ 0.1*NB
PB ~~ 0.1*PB
JP ~~ 0.1*JP

NB ~~ 0.1*PB
NB ~~ 0.1*JP
JP ~~ 0.1*PB'

RAM_all <- lavaan2RAM(model_all, obs.variables = varnames)

#### SEM全部数据及调和平均数 ####
fin_dat <- list(all_dat, all_dat.l, all_dat.h)
fin_n <- c(all_n, n_l, n_h)

stage1 <- list()
stage2 <- list()
stage2_LB <- list()
stage2_Z <- list()
ind_LB <- list()
ind_Z <- list()
fitness <- list()
path <- list()
ind <- list()
sem <- list()
name <- c("all", "low individualism", "high individualism")
for (i in 1:length(fin_dat)){
  #### stage1 ####
  stage1[[i]] <- tssem1(Cov = fin_dat[[i]], n = fin_n[i], method = "FEM", 
                        RE.type = "Diag", RE.startvalues=0.1,
                        acov = "weighted")
  
  summary(stage1[[i]])
  #### stage2 ####
  stage2[[i]] <- tssem2(stage1[[i]], Amatrix = RAM_all$A, Smatrix = RAM_all$S)
  summary(stage2[[i]])
  
  stage2_LB[[i]] <- tssem2(stage1[[i]], Amatrix = RAM_all$A, Smatrix = RAM_all$S,
                           diag.constraints = TRUE, intervals.type = "LB",
                           mx.algebras = list(
                             #POQ-NE-Y                         
                             IndNE_NB = mxAlgebra(NEONPOQ*NBONNE, name = "IndNE_NB"),
                             IndNE_PB = mxAlgebra(NEONPOQ*PBONNE, name = "IndNE_PB"),
                             IndNE_JP = mxAlgebra(NEONPOQ*JPONNE, name = "IndNE_JP"),
                             #POQ-PS-Y                          
                             IndPS_NB = mxAlgebra(PSONPOQ*NBONPS, name = "IndPS_NB"),
                             IndPS_PB = mxAlgebra(PSONPOQ*PBONPS, name = "IndPS_PB"),
                             IndPS_JP = mxAlgebra(PSONPOQ*JPONPS, name = "IndPS_JP"),
                             #POQ-NE+PS-Y                          
                             Indall_NB = mxAlgebra(NEONPOQ*NBONNE + PSONPOQ*NBONPS, name = "Indall_NB"),
                             Indall_PB = mxAlgebra(NEONPOQ*PBONNE + PSONPOQ*PBONPS, name = "Indall_PB"),
                             Indall_JP = mxAlgebra(NEONPOQ*JPONNE + PSONPOQ*JPONPS, name = "Indall_JP"),
                             #POQ-NE+PS-Y  PLUS POQ-Y                          
                             Total_NB = mxAlgebra(NEONPOQ*NBONNE + PSONPOQ*NBONPS + NBONPOQ, name = "Total_NB"),
                             Total_PB = mxAlgebra(NEONPOQ*PBONNE + PSONPOQ*PBONPS + PBONPOQ, name = "Total_PB"),
                             Total_JP = mxAlgebra(NEONPOQ*JPONNE + PSONPOQ*JPONPS + JPONPOQ, name = "Total_JP"),
                             #Diff POQ-(NE-PS)-Y                          
                             DIF_NEminusPS_NB= mxAlgebra(NEONPOQ*NBONNE - PSONPOQ*NBONPS, name = "DIF_NEminusPS_NB"),
                             DIF_NEminusPS_PB= mxAlgebra(NEONPOQ*PBONNE - PSONPOQ*PBONPS, name = "DIF_NEminusPS_PB"),
                             DIF_NEminusPS_JP= mxAlgebra(NEONPOQ*JPONNE - PSONPOQ*JPONPS, name = "DIF_NEminusPS_JP")))
  stage2_LB[[i]] <- rerun(stage2_LB[[i]])
  ind_LB[[i]] <- summary(stage2_LB[[i]])
  
  stage2_Z[[i]] <- tssem2(stage1[[i]], Amatrix = RAM_all$A, Smatrix = RAM_all$S,
                          diag.constraints = FALSE, intervals.type = "z",
                          mx.algebras = list(
                            IndNE_NB = mxAlgebra(NEONPOQ*NBONNE, name = "IndNE_NB"),
                            IndNE_PB = mxAlgebra(NEONPOQ*PBONNE, name = "IndNE_PB"),
                            IndNE_JP = mxAlgebra(NEONPOQ*JPONNE, name = "IndNE_JP"),
                            
                            IndPS_NB = mxAlgebra(PSONPOQ*NBONPS, name = "IndPS_NB"),
                            IndPS_PB = mxAlgebra(PSONPOQ*PBONPS, name = "IndPS_PB"),
                            IndPS_JP = mxAlgebra(PSONPOQ*JPONPS, name = "IndPS_JP"),
                            
                            Indall_NB = mxAlgebra(NEONPOQ*NBONNE + PSONPOQ*NBONPS, name = "Indall_NB"),
                            Indall_PB = mxAlgebra(NEONPOQ*PBONNE + PSONPOQ*PBONPS, name = "Indall_PB"),
                            Indall_JP = mxAlgebra(NEONPOQ*JPONNE + PSONPOQ*JPONPS, name = "Indall_JP"),
                            
                            Total_NB = mxAlgebra(NEONPOQ*NBONNE + PSONPOQ*NBONPS + NBONPOQ, name = "Total_NB"),
                            Total_PB = mxAlgebra(NEONPOQ*PBONNE + PSONPOQ*PBONPS + PBONPOQ, name = "Total_PB"),
                            Total_JP = mxAlgebra(NEONPOQ*JPONNE + PSONPOQ*JPONPS + JPONPOQ, name = "Total_JP"),
                            
                            DIF_NEminusPS_NB= mxAlgebra(NEONPOQ*NBONNE - PSONPOQ*NBONPS, name = "DIF_NEminusPS_NB"),
                            DIF_NEminusPS_PB= mxAlgebra(NEONPOQ*PBONNE - PSONPOQ*PBONPS, name = "DIF_NEminusPS_PB"),
                            DIF_NEminusPS_JP= mxAlgebra(NEONPOQ*JPONNE - PSONPOQ*JPONPS, name = "DIF_NEminusPS_JP")))
  stage2_Z[[i]] <- rerun(stage2_Z[[i]])
  ind_Z[[i]] <- summary(stage2_Z[[i]])
  #### 拟合系数 ####
  fitness[[i]] <- ind_LB[[i]][["stat"]]%>%as.data.frame%>%round(2)%>%
    set_colnames("Goodness-of-fit indices")
  #### 路径系数 ####
  path[[i]] <- data.frame(round(ind_Z[[i]][["coefficients"]][,1], 2),
                          paste("[", round(ind_Z[[i]][["coefficients"]][,3], 2),",",
                                round(ind_Z[[i]][["coefficients"]][,4], 2), "]"),
                          round(ind_Z[[i]][["coefficients"]][,2], 2),
                          round(ind_Z[[i]][["coefficients"]][,5], 2),
                          round(ind_Z[[i]][["coefficients"]][,6], 2)) %>% 
    set_colnames(c("β", "95% CI", "SE", "z", "p")) %>% 
    set_rownames(c("NE->JP", "POQ->JP", "PS->JP",
                   "NE->NB", "POQ->NB", "PS->NB",
                   "POQ->NE", "NE->PB", "POQ->PB",
                   "PS->PB", "POQ->PS"))
  #### 中介效应 ####
  ind[[i]] <- data.frame(round(ind_LB[[i]][["mx.algebras"]][,2],2),
                         paste("[", round(ind_LB[[i]][["mx.algebras"]][,1],2), ",",
                               round(ind_LB[[i]][["mx.algebras"]][,3],2), "]")) %>%
    set_colnames(c("β", "95%CI"))%>%
    set_rownames(c("IndNE_NB", "IndNE_PB", "IndNE_JP", 
                   "IndPS_NB", "IndPS_PB", "IndPS_JP", 
                   "Indall_NB", "Indall_PB", "Indall_JP", 
                   "Total_NB", "Total_PB", "Total_JP", 
                   "DIF_NEminusPS_NB", "DIF_NEminusPS_PB", "DIF_NEminusPS_JP"))
  sem[[i]] <- list(name = name[i], 
                   fit=fitness[[i]], path = path[[i]], ind = ind[[i]])
  sem[[i]]
  i = i + 1}
#### 相关系数文本 ####
sem.matrix <- cbind(c(poq.ne$word, poq.ps$word, poq.nb$word, poq.pb$word, poq.jp$word),
                    c(" ", ne.ps$word, ne.nb$word, ne.pb$word, ne.jp$word),
                    c(" ", " ", ps.nb$word, ps.pb$word,ps.jp$word),
                    c(" ", " ", " ", nb.pb$word, nb.jp$word),
                    c(" ", " "," ", " ", pb.jp$word))%>%
  set_colnames(c("资质过剩感", "消极情绪", "积极自我概念", "消极角色外行为", "积极角色外行为"))%>%
  set_rownames(c("消极情绪", "积极自我概念", "消极角色外行为", "积极角色外行为", "任务绩效"))

write.csv(sem.matrix, "Table2_变量相关系数矩阵.csv")  # 表2

#### 结构方程分析结果 ####
# 此处获取结构方程拟合结果
final_fit <- cbind(sem[[1]][["fit"]][c(1,7,4),],
                   sem[[2]][["fit"]][c(1,7,4),],
                   sem[[3]][["fit"]][c(1,7,4),])%>% 
  set_rownames(c("n", "Chi", "p"))%>%
  set_colnames(c("全样本", "高集体主义", "低集体主义"))
# 此处获取图2到4信息 ####
final_path <- rbind(c("全样本", " "," ", " ", " ",
                      "高集体主义", " "," ", " ", " ",
                      "低集体主义", " "," ", " ", " "),
                    rep(c("β", "CI", "SE", "z", "p"), 3),
                    cbind(rbind(sem[[1]][["path"]]),
                          rbind(sem[[2]][["path"]]),
                          rbind(sem[[3]][["path"]])))%>%set_colnames(c(1:15))

write.csv(final_path, "Figure2_4_模型1-3路径系数.csv") # 图2、图3、图4

final_ind <- rbind(rep(c("β", "95%CI"),3),
                   cbind(sem[[1]][["ind"]],
                         sem[[2]][["ind"]],
                         sem[[3]][["ind"]]))%>%set_colnames(c(1:6))
final_ind_final <- rbind(final_ind[c(1:7, 14:16, 11:13),])

write.csv(final_ind_final, "Table3_情绪认知间接效应检验.csv") # 表3


#### 3………………概念冗余度检验………………####
#### 相关矩阵构建 ####
matrix <- data.frame(maineffects$x, maineffects$y, maineffects$dim, 
                     paste( "(", maineffects$k, ",", maineffects$n, ")" ) ,
                     paste( "(", maineffects$r, ",", maineffects$rho, ")" ) ,
                     maineffects$`95% CI`, maineffects$`80% CV`, maineffects$rho)%>%
  set_colnames(c("x", "dim", "y", "(k, n)", "(r, ρ)", "95% CI", "80% CV", "rho"))

matrix$all = matrix$`(r, ρ)`

poq_pj <- subset(matrix, matrix$x == "资质过剩感" & matrix$y == "个人工作匹配")
poq_po <- subset(matrix, matrix$x == "资质过剩感" & matrix$y == "个人组织匹配")
poq_y <- subset(matrix, (matrix$y == "压力(反向)"|
                         matrix$y == "组织承诺"|
                         matrix$y == "工作满意度"|
                         matrix$y == "创新"|
                         matrix$y == "组织公民行为"|
                         matrix$y == "反生产行为"|
                         matrix$y == "离职意愿"|
                         matrix$y == "任务绩效")&
                         matrix$x == "资质过剩感")
pj_po <- subset(matrix, matrix$x == "个人工作匹配" & 
                        matrix$dim == "个人组织匹配")
pj_y<- subset(matrix, (matrix$x == "个人工作匹配"&
                      (matrix$y == "压力(反向)"|
                       matrix$y == "组织承诺"|
                       matrix$y == "工作满意度"))|
                      (matrix$dim == "个人工作匹配"&
                      (matrix$y == "创新"|
                       matrix$y == "组织公民行为"|
                       matrix$y == "反生产行为"|
                       matrix$y == "离职意愿"|
                       matrix$y == "任务绩效")))
po_y <- subset(matrix, (matrix$x == "个人组织匹配"&
                       (matrix$y == "压力(反向)"|
                        matrix$y == "组织承诺"|
                        matrix$y == "工作满意度"))|
                       (matrix$dim == "个人组织匹配"&
                       (matrix$y == "创新"|
                        matrix$y == "组织公民行为"|
                        matrix$y == "反生产行为"|
                        matrix$y == "离职意愿"|
                        matrix$y == "任务绩效")))
#### 相关矩阵表格 ####
ynames <- c("创新", "组织公民行为", "反生产行为", "离职意愿",
            "任务绩效", "压力(反向)", "工作满意度", "组织承诺")
rwa.text <- data.frame(ynames, poq_y= poq_y$all, pj_y = pj_y$all, po_y = po_y$all, 
                       poq_pj = poq_pj$all, poq_po = poq_po$all,
                       pj_po = pj_po$all)

write.csv(rwa.text, "Table4_poq及匹配与结果变量相关性.csv") # 表4

#### 数据准备:相对权重分析 ####
data.rwa <- data.frame(ynames, poq_y= poq_y$rho, pj_y = pj_y$rho, po_y = po_y$rho, 
                       poq_pj = poq_pj$rho, poq_po = poq_po$rho,
                       pj_po = pj_po$rho)
varnames <- c("y", "poq", "pj", "po")
lables <- list(varnames, varnames)
cordat <- list()
for (i in 1:nrow(data.rwa)){
  cordat[[i]] <- vec2symMat(as.matrix(data.rwa[i,2:ncol(data.rwa)]), 
                            diag = FALSE, byrow = FALSE) 
  dimnames(cordat[[i]]) <- lables}


#### 相对权重分析函数 ####
#注:参考https://relativeimportance.davidson.edu/,根据本研究做相应调整
multRegress<-function(mydata){
  numVar<<-NCOL(mydata)
  Variables<<- names(mydata)[2:numVar]
  RXX<-mydata[2:numVar,2:numVar]
  RXY<-mydata[2:numVar,1]
  RXX.eigen<-eigen(RXX)
  D<-diag(RXX.eigen$val)
  delta<-sqrt(D)
  lambda<-RXX.eigen$vec%*%delta%*%t(RXX.eigen$vec)
  lambdasq<-lambda^2
  beta<-solve(lambda)%*%RXY
  rsquare<<-sum(beta^2)
  RawWgt<-lambdasq%*%beta^2
  import<-(RawWgt/rsquare)*100
  result<-data.frame(Variables, Raw.W=round(RawWgt,2), 
                      R.perc=round(import,2), 
                      R2 = round(rsquare,2))
}

#### POQ fit 相对权重计算 ####
rawdata <- list()
thedata <- list()
Labels <- list()
a <- list()
title <- list()
R_square <- list()
rwa.results <- list()

for (i in 1:length(cordat)){
  rawdata[[i]]<- data.frame(cordat[[i]]) 
  attach(rawdata[[i]])
  thedata[[i]] <- data.frame(y, poq, pj, po)
  Labels[[i]] <- names(thedata[[i]])[2:length(thedata[[i]])]
  a[[i]] <- multRegress(thedata[[i]]) %>% set_colnames(c("变量", "W", "%R", "R2"))
  title[[i]] <- data.frame("", ynames[[i]], "", "") %>% set_colnames(c("变量", "W", "%R", "R2"))
  R_square[[i]] <- data.frame("R2", unique(a[[i]][,4]), "", "") %>% set_colnames(c("变量", "W", "%R", "R2"))
  rwa.results[[i]] <- rbind(a[[i]], R_square[[i]], title[[i]], 
                            data.frame("变量", "W", "%R", "R2") %>% 
                              set_colnames(c("变量", "W", "%R", "R2")))[, 1:3]
  rwa.results[[i]] <- data.frame(id = c(1:nrow(rwa.results[[i]])), rwa.results[[i]])
}

total<-merge(rwa.results[[1]],
             rwa.results[2:length(rwa.results)], by="id")%>%t%>%unique%>%t
total.rwa <- rbind(total[5:6,], total[1:4,])

write.csv(total.rwa, file = "Table5_6_相对权重分析结果.csv") # 表5与表6

纳入元分析的文献

Abdi, T. A., Peiro, J. M., Ayala, Y., Zappala, S. (2019). Four wellbeing patterns and their antecedents in millennials at work. International Journal of Environmental Research and Public Health, 16, 1–17.

Agut, S., Peiró, J. M., Grau, R. (2009). The effect of overeducation on job content innovation and career-enhancing strategies among young spanish employees. Journal of Career Development, 36, 159–182.

Ahmed, W., Greetje, V. D. W., Kuyper, H., Minnaert, A. (2013). Emotions, self-regulated learning, and achievement in mathematics: A growth curve analysis. Journal of Educational Psychology, 105, 150–161. Quoted in Tze, V. M. C., Daniels, L. M., & Klassen, R. M. (2016). Evaluating the relationship between boredom and academic outcomes: A meta-analysis. Educational Psychology Review, 28, 119–144.

Alfes, K. (2013). Perceived overqualification and performance. The role of the peer-group. Zeitschrift Fur Personalforschung, 27, 314–330.

Alfes, K., Shantz, A., van Baalen, S. (2016). Reducing perceptions of overqualification and its impact on job satisfaction: The dual roles of interpersonal relationships at work. Human Resource Management Journal, 26, 84–101.

Allan, B. A., Rolniak, J. R., Bouchard, L. (2018). Underemployment and well-being: Exploring the dark side of meaningful work. Journal of Career Development, 1–15.

Allan, B. A., Tay, L., Sterling, H. M. (2017). Construction and validation of the Subjective Underemployment Scales (SUS). Journal of Vocational Behavior, 99, 93–106.

Arendt, L. A. (2006). Leader’s use of positive humor: Effects of follower’s self-efficacy and creative performance (Doctoral dissertation). University of Wisconsin-Milwaukee, Milwaukee, WI. Quoted in Liu, D., Jiang, K., Shalley, C. E., Keem, S., & Zhou, J. (2016). Motivational mechanisms of employee creativity: A meta-analytic examination and theoretical extension of the creativity literature. Organizational Behavior and Human Decision Processes, 137, 236–263.

Artino, A. R. (2009). Think, feel, act: Motivational and emotional influences on military students’ online academic success. Journal of Computing in Higher Education, 21, 146–166. Quoted in Tze, V. M. C., Daniels, L. M., & Klassen, R. M. (2016). Evaluating the relationship between boredom and academic outcomes: A meta-analysis. Educational Psychology Review, 28, 119–144.

Artino, A. R., Li, K. D. J. (2012). Exploring the complex relations between achievement emotions and self-regulated learning behaviors in online learning. Internet Higher Education, 15, 170–175. Quoted in Tze, V. M. C., Daniels, L. M., & Klassen, R. M. (2016). Evaluating the relationship between boredom and academic outcomes: A meta-analysis. Educational Psychology Review, 28, 119–144.

Artino, A. R., Rochelle, J. S. L., Durning, S. J. (2010). Second-year medical students’ motivational beliefs, emotions, and achievement. Medical Education, 44, 1203–1212. Quoted in Tze, V. M. C., Daniels, L. M., & Klassen, R. M. (2016). Evaluating the relationship between boredom and academic outcomes: A meta-analysis. Educational Psychology Review, 28, 119–144.

Arvan, M. L. (2015). How overqualification impacts job attitudes and well-being: The unique roles of perceptions and reality (Master Thesis). University of South Florida.

Arvan, M. L., Pindek, S., Andel, S. A., Spector, P. E. (2019). Too good for your job? Disentangling the relationships between objective overqualification, perceived overqualification, and job dissatisfaction. Journal of Vocational Behavior, 115, 103323.

Aryee, S., Walumbwa, F. O., Zhou, Q., Hartnell, C. A. (2012). Transformational leadership, innovative behavior, and task performance: Test of mediation and moderation processes. Human Performance, 25, 1–25. Quoted in Michael, B., Harari, Angela, C., & Reaves, et al. (2016). Creative and innovative performance: a meta-analysis of relationships with task, citizenship, and counterproductive job performance dimensions. European Journal of Work and Organizational Psychology, 25(4), 495-511.

Asseburg, R., Frey, A. (2013). Too hard, too easy, or just right? The relationship between effort or boredom and ability-difficulty fit. Psychological Test Assessment Modeling, 55, 92–104. Quoted in Tze, V. M. C., Daniels, L. M., & Klassen, R. M. (2016). Evaluating the relationship between boredom and academic outcomes: A meta-analysis. Educational Psychology Review, 28, 119–144.

Aydin, E., Atis, G., Bolu, A., Aydin, C., Karabacak, E., Dogan, B., Ates, M. A. (2016). Identification of anger and self-esteem in psoriasis patients in a consultation-liaison psychiatry setting: A case control study. Bulletin of Clinical Psychopharmacology, 32, 1.

Bauer, J. A., Spector, P. E. (2015). Discrete negative emotions and counterproductive work behavior. Human Performance, 28, 307–331.

Beck, G. L. (2011). Investigation of the relationship between achievement emotions and academic performance in medical students. (Doctoral dissertation). The University of Texas at Austin. Quoted in Tze, V. M. C., Daniels, L. M., & Klassen, R. M. (2016). Evaluating the relationship between boredom and academic outcomes: A meta-analysis. Educational Psychology Review, 28, 119–144.

Benedict, J. N., Gayatridevi, S., Velayudhan, A. (2009). Perceived overqualification, job satisfaction, somatization and job stress of MNC executives. Journal of the Indian Academy of Applied Psychology, 35, 283–289.

Berk, U., Kahya, M., Kuzu, B., Bayramlik, H. (2015). Effect of laborers’ overqualification perception on job satisfaction and organizational commitment: An empirical study on health sector in turkey. Journal of International Health Sciences and Management, 1, 60–73.

Binnewies, C., Sonnentag, S., Mojza, E. J. (2009). Feeling recovered and thinking about the good sides of one’s work. Journal of Occupational Health Psychology, 14, 243–256. Quoted in Michael, B., Harari, Angela, C., & Reaves, et al. (2016). Creative and innovative performance: a meta-analysis of relationships with task, citizenship, and counterproductive job performance dimensions. European Journal of Work and Organizational Psychology, 25(4), 495-511.

Bolino, M. C., Feldman, D. C. (2000). The antecedents and consequences of underemployment among expatriates. Journal of Organizational Behavior, 21, 889–911.

Bowling, N. A. (2011). A meta-analysis of the predictors and consequences of organization-based self-esteem. Journal of Occupational Organizational Psychology, 83, 601–626.

Bruursema, K., Kessler, S. R., Spector, P. E. (2011). Bored employees misbehaving: The relationship between boredom and counterproductive work behaviour. Work Stress, 25, 93–107.

Carnevale, J. B., Huang, L., Harms, P. D. (2018). Leader consultation mitigates the harmful effects of leader narcissism: A belongingness perspective. Organizational Behavior Human Decision Processes, 146, 76–84.

Chae, H., Choi, R. J. (2012). Mediating role of creativity on the job complexity-task performance relation in two job types. Academy of Management Annual Meeting Proceedings, 15884. Quoted in Liu, D., Jiang, K., Shalley, C. E., Keem, S., & Zhou, J. (2016). Motivational mechanisms of employee creativity: A meta-analytic examination and theoretical extension of the creativity literature. Organizational Behavior and Human Decision Processes, 137, 236–263.

Chambers, W. C. (1997). Achievement orientation: Origins, influences, and outcomes (Master’s thesis). Available from ProQuest Dissertations and Theses database. (UMI No. 1388663). Quoted in Tze, V. M. C., Daniels, L. M., & Klassen, R. M. (2016). Evaluating the relationship between boredom and academic outcomes: A meta-analysis. Educational Psychology Review, 28, 119–144.

Chao, M. M. C., Farh, J. L. (2012). A longitudinal investigation of the influence of foreign cultural experiences on the development of creativity. Modern Rheumatology, 12, 287–293. Quoted in Liu, D., Jiang, K., Shalley, C. E., Keem, S., & Zhou, J. (2016). Motivational mechanisms of employee creativity: A meta-analytic examination and theoretical extension of the creativity literature. Organizational Behavior and Human Decision Processes, 137, 236–263.

Chen, G., Farh, J. L., Campbell-Bush, E. M., Wu, Z., Wu, X. (2013). Teams as innovative systems: Multilevel motivational antecedents of innovation in r&d teams. Journal of Applied Psychology, 98, 1018–1027. Quoted in Liu, D., Jiang, K., Shalley, C. E., Keem, S., & Zhou, J. (2016). Motivational mechanisms of employee creativity: A meta-analytic examination and theoretical extension of the creativity literature. Organizational Behavior and Human Decision Processes, 137, 236–263.

Chen, M., Liang, J. (2015). Unpacking the relationship between transformational leadership and employee creativity. Presented at the academy of management conference, Vancouver, Canada. Quoted in Liu, D., Jiang, K., Shalley, C. E., Keem, S., & Zhou, J. (2016). Motivational mechanisms of employee creativity: A meta-analytic examination and theoretical extension of the creativity literature. Organizational Behavior and Human Decision Processes, 137, 236–263.

Chen, Z. X., Aryee, S. (2007). Delegation and employee work outcomes: An examination of the cultural context of mediating processes in china. Academy of Management Journal, 50, 226–238. Quoted in Michael, B., Harari, Angela, C., & Reaves, et al. (2016). Creative and innovative performance: a meta-analysis of relationships with task, citizenship, and counterproductive job performance dimensions. European Journal of Work and Organizational Psychology, 25(4), 495-511.

Cheng, B., Zhou, X., Guo, G., Yang, K. (2018). Perceived overqualification and cyberloafing: A moderated-mediation model based on equity theory. Journal of Business Ethics, 164, 565–577.

Cheung, S. Y. (2011). Refinement or breakthrough? The link between goal orientation, employee learning, creativity and job performance (Doctoral dissertation). Hong Kong University of Science and Technology, Hong Kong, China. Quoted in Michael, B., Harari, Angela, C., & Reaves, et al. (2016). Creative and innovative performance: a meta-analysis of relationships with task, citizenship, and counterproductive job performance dimensions. European Journal of Work and Organizational Psychology, 25(4), 495-511.

Chughtai, A. A., Buckley, F. (2011). Work engagement: Antecedents, the mediating role of learning goal orientation and job performance. Career Development International, 16, 684–705. Quoted in Michael, B., Harari, Angela, C., & Reaves, et al. (2016). Creative and innovative performance: a meta-analysis of relationships with task, citizenship, and counterproductive job performance dimensions. European Journal of Work and Organizational Psychology, 25(4), 495-511.

Cowan, M., Piepgrass, K. (1997). Attitudes about science among non-majors at a two-year campus of a liberal arts university. Education Resources Information Center. Quoted in Tze, V. M. C., Daniels, L. M., & Klassen, R. M. (2016). Evaluating the relationship between boredom and academic outcomes: A meta-analysis. Educational Psychology Review, 28, 119–144.

Crouter, A. C., Davis, K. D., Updegraff, K. (2010). Mexican American fathers’ occupational conditions: Links to family members’ psychological adjustment. Journal of Marriage Family, 68, 843–858.

da Costa, C. G., Zhou, Q., Ferreira, A. I. (2018). The impact of anger on creative process engagement: The role of social contexts. Journal of Organizational Behavior, 39, 495–506.

Daniels, L. M. (2009). Goals and control: Exploring relationship between two types of motivational constructs and their effects on university students’ emotions and achievement (Doctoral dissertation). University of Manitoba, Canada. Quoted in Tze, V. M. C., Daniels, L. M., & Klassen, R. M. (2016). Evaluating the relationship between boredom and academic outcomes: A meta-analysis. Educational Psychology Review, 28, 119–144.

Daniels, L. M., Haynes, T. L., Stupnisky, R. H., Perry, R. P., Newall, N. E., Pekrun, R. (2008). Individual differences in achievement goals: A longitudinal study of cognitive, emotional, and achievement outcomes. Contemporary Educational Psychology, 33, 584–608. Quoted in Tze, V. M. C., Daniels, L. M., & Klassen, R. M. (2016). Evaluating the relationship between boredom and academic outcomes: A meta-analysis. Educational Psychology Review, 28, 119–144.

Daniels, L. M., Stupnisky, R. H., Pekrun, R., Haynes, T. L., Perry, R. P., Newall, N. E. (2009). A longitudinal analysis of achievement goals: From affective antecedents to emotional effects and achievement outcomes. Journal of Educational Psychology, 101, 948–963.

Dar, N., Rahman, W. (2020). Two angles of overqualification-the deviant behavior and creative performance: The role of career and survival job. PLoS ONE, 15, 1–16.

de Acedo Lizarraga, M. L. S., de Acedo Baquedano, M. T. S., Closas, A. H. (2014). An explanatory model regarding the relationships between psychological traits and creativity. Anales de Psicología, 30, 355–363. Quoted in Liu, D., Jiang, K., Shalley, C. E., Keem, S., & Zhou, J. (2016). Motivational mechanisms of employee creativity: A meta-analytic examination and theoretical extension of the creativity literature. Organizational Behavior and Human Decision Processes, 137, 236–263.

Debus, M. E., Gross, C., Kleinmann, M. (2020). The power of doing: How job crafting transmits the beneficial impact of autonomy among overqualified employees. Journal of Business and Psychology, 317–331.

Deng, H., Guan, Y., Wu, C.-H., Erdogan, B., Bauer, T., Yao, X. (2018). A relational model of perceived overqualification: The moderating role of interpersonal influence on social acceptance. Journal of Management, 44, 3288–3310.

Dewett, T. (2002). Differentiating outcomes in employee creativity: Understanding the role of risk in creative performance (Doctoral dissertation). Texas A&M University, College Station, TX. Quoted in Liu, D., Jiang, K., Shalley, C. E., Keem, S., & Zhou, J. (2016). Motivational mechanisms of employee creativity: A meta-analytic examination and theoretical extension of the creativity literature. Organizational Behavior and Human Decision Processes, 137, 236–263.

Dewett, T. (2007). Linking intrinsic motivation, risk taking, and employee creativity in an R&D environment. R&D Management, 37, 197–208. Quoted in Liu, D., Jiang, K., Shalley, C. E., Keem, S., & Zhou, J. (2016). Motivational mechanisms of employee creativity: A meta-analytic examination and theoretical extension of the creativity literature. Organizational Behavior and Human Decision Processes, 137, 236–263.

Dumani, S. (2015). Engaging overqualified employees: The role of job and nonwork crafting. (Doctoral dissertation). University of South Florida, US.

Eatough, E. M., Meier, L. L., Igic, I., Elfering, A., Spector, P. E., Semmer, N. K. (2016). You want me to do what? Two daily diary studies of illegitimate tasks and employee well-being. Journal of Organizational Behavior, 37, 108–127.

Eder, P. J. (2007). Integrating the componential and interactionist models of employee creativity (Doctoral dissertation). University of Delaware, Newark, DE. Quoted in Liu, D., Jiang, K., Shalley, C. E., Keem, S., & Zhou, J. (2016). Motivational mechanisms of employee creativity: A meta-analytic examination and theoretical extension of the creativity literature. Organizational Behavior and Human Decision Processes, 137, 236–263.

Ellefson, S. K. (2010). Bullying in high-tech professions (Doctoral dissertation). San Jose State University, San Jose, CA. Quoted in Liu, D., Jiang, K., Shalley, C. E., Keem, S., & Zhou, J. (2016). Motivational mechanisms of employee creativity: A meta-analytic examination and theoretical extension of the creativity literature. Organizational Behavior and Human Decision Processes, 137, 236–263.

Erdogan, B., Bauer, T. N. (2009). Perceived overqualification and its outcomes: The moderating role of empowerment. Journal of Applied Psychology, 94, 557–565.

Erdogan, B., Karaeminogullari, A., Bauer, T. N., Ellis, A. M. (2020). Perceived overqualification at work: Implications for extra-role behaviors and advice network centrality. Journal of Management, 4, 583–606.

Erdogan, B., Tomás, I., Valls, V., Gracia, F. J. (2018). Perceived overqualification, relative deprivation, and person-centric outcomes: The moderating role of career centrality. Journal of Vocational Behavior, 107, 233–245.

Erdogan, B., Zahide Karakitapoğlu〢ygün, Caughlin, D. E., Bauer, T. N., Gumusluoglu, L. (2020). Employee overqualification and manager job insecurity: Implications for employee career outcomes. Human Resource Management, 1–13.

Feldman, D. C., Turnley, W. H. (2007). Underemployment among recent business college graduates. Journal of Organizational Behavior, 16, 691–706.

Fernandes, F. G. (2016). Understanding perceived overqualification: Expanding the criterion space, establishing drivers, and developing a model (Doctoral dissertation). DePaul University.

Ferris, D. L., Spence, J. R., Brown, D. J., Heller, D. (2012). Interpersonal injustice and workplace deviance: The role of esteem threat. Journal of Management, 38, 1788–1811. Quoted in Shockley, K. M., Ispas, D., Rossi, M. E., & Levine, E. L. (2012). A meta-analytic investigation of the relationship between state affect, discrete emotions, and job performance. Human Performance, 25, 377–411.

Fine, S., Edward, M. (2017). Breaking the rules, not the law: The potential risks of counterproductive work behaviors among overqualified employees. International Journal of Selection and Assessment, 25, 401–405.

Fine, S., Nevo, B. (2008). Too smart for their own good? A study of perceived cognitive overqualification in the workforce. International Journal of Human Resource Management, 19, 346–355.

Fluegge, E. R. (2008). Who put the fun in functional? Fun at work and its effects on job performance (Doctoral dissertation). University of Florida. Quoted in Michael, B., Harari, Angela, C., & Reaves, et al. (2016). Creative and innovative performance: a meta-analysis of relationships with task, citizenship, and counterproductive job performance dimensions. European Journal of Work and Organizational Psychology, 25(4), 495-511.

Ford, M. T., Wang, Y., Jin, J., Eisenberger, R. (2017). Chronic and episodic anger and