“Mplus Second-Order CFA Example 5.6”的版本间的差异
来自OBHRM百科
Lichaoping(讨论 | 贡献) |
Lichaoping(讨论 | 贡献) (→结果) |
||
第12行: | 第12行: | ||
OUTPUT:STANDARDIZED; ! 报告标准化之后的结果,这是增加的命令语句</pre> | OUTPUT:STANDARDIZED; ! 报告标准化之后的结果,这是增加的命令语句</pre> | ||
==结果== | ==结果== | ||
− | < | + | <pre>Mplus VERSION 7.4 |
MUTHEN & MUTHEN | MUTHEN & MUTHEN | ||
03/13/2017 1:53 PM | 03/13/2017 1:53 PM |
2017年3月13日 (一) 13:54的版本
示意图
代码与注释
TITLE: this is an example of a second-order factor analysis ! 这是标题 DATA: FILE IS ex5.6.dat; ! 读数据文件 VARIABLE: NAMES ARE y1-y12; ! 数据文件中有12个变量,命名y1-y12 MODEL: f1 BY y1-y3; ! 定义第1个因素,该因素的测量指标有:y1,y2,y3。 f2 BY y4-y6; ! 定义第2个因素,该因素的测量指标有:y4,y5,y6。 f3 BY y7-y9; ! 定义第3个因素,该因素的测量指标有:y7,y8,y9。 f4 BY y10-y12; ! 定义第4个因素,该因素的测量指标有:y10,y11,y12。 f5 BY f1-f4; ! 二阶因素f5 OUTPUT:STANDARDIZED; ! 报告标准化之后的结果,这是增加的命令语句
结果
Mplus VERSION 7.4 MUTHEN & MUTHEN 03/13/2017 1:53 PM INPUT INSTRUCTIONS TITLE: this is an example of a second-order factor analysis DATA: FILE IS ex5.6.dat; VARIABLE: NAMES ARE y1-y12; MODEL: f1 BY y1-y3; f2 BY y4-y6; f3 BY y7-y9; f4 BY y10-y12; f5 BY f1-f4; OUTPUT:STANDARDIZED; INPUT READING TERMINATED NORMALLY this is an example of a second-order factor analysis SUMMARY OF ANALYSIS Number of groups 1 Number of observations 500 Number of dependent variables 12 Number of independent variables 0 Number of continuous latent variables 5 Observed dependent variables Continuous Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Continuous latent variables F1 F2 F3 F4 F5 Estimator ML Information matrix OBSERVED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 Input data file(s) ex5.6.dat Input data format FREE THE MODEL ESTIMATION TERMINATED NORMALLY MODEL FIT INFORMATION Number of Free Parameters 40 Loglikelihood H0 Value -7211.373 H1 Value -7188.001 Information Criteria Akaike (AIC) 14502.746 Bayesian (BIC) 14671.330 Sample-Size Adjusted BIC 14544.368 (n* = (n + 2) / 24) Chi-Square Test of Model Fit Value 46.743 Degrees of Freedom 50 P-Value 0.6049 RMSEA (Root Mean Square Error Of Approximation) Estimate 0.000 90 Percent C.I. 0.000 0.026 Probability RMSEA <= .05 1.000 CFI/TLI CFI 1.000 TLI 1.001 Chi-Square Test of Model Fit for the Baseline Model Value 4012.035 Degrees of Freedom 66 P-Value 0.0000 SRMR (Standardized Root Mean Square Residual) Value 0.019 MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value F1 BY Y1 1.000 0.000 999.000 999.000 Y2 0.760 0.031 24.275 0.000 Y3 0.669 0.030 22.309 0.000 F2 BY Y4 1.000 0.000 999.000 999.000 Y5 0.718 0.030 23.976 0.000 Y6 0.703 0.031 22.853 0.000 F3 BY Y7 1.000 0.000 999.000 999.000 Y8 0.702 0.026 26.955 0.000 Y9 0.691 0.026 26.764 0.000 F4 BY Y10 1.000 0.000 999.000 999.000 Y11 0.742 0.029 25.350 0.000 Y12 0.669 0.029 23.461 0.000 F5 BY F1 1.000 0.000 999.000 999.000 F2 0.944 0.148 6.397 0.000 F3 1.168 0.179 6.516 0.000 F4 0.854 0.139 6.142 0.000 Intercepts Y1 0.011 0.059 0.183 0.855 Y2 0.028 0.046 0.617 0.537 Y3 0.005 0.043 0.109 0.913 Y4 0.100 0.060 1.652 0.099 Y5 0.078 0.045 1.730 0.084 Y6 0.076 0.046 1.671 0.095 Y7 0.024 0.061 0.390 0.697 Y8 0.025 0.046 0.545 0.585 Y9 0.034 0.046 0.741 0.458 Y10 -0.016 0.062 -0.261 0.794 Y11 0.010 0.047 0.202 0.840 Y12 0.006 0.045 0.134 0.894 Variances F5 0.464 0.100 4.657 0.000 Residual Variances Y1 0.348 0.043 8.132 0.000 Y2 0.251 0.027 9.465 0.000 Y3 0.320 0.026 12.271 0.000 Y4 0.366 0.045 8.187 0.000 Y5 0.268 0.026 10.303 0.000 Y6 0.330 0.028 11.636 0.000 Y7 0.272 0.038 7.094 0.000 Y8 0.282 0.025 11.445 0.000 Y9 0.276 0.024 11.416 0.000 Y10 0.362 0.045 8.107 0.000 Y11 0.266 0.027 9.854 0.000 Y12 0.323 0.027 11.991 0.000 F1 0.913 0.103 8.855 0.000 F2 1.036 0.107 9.672 0.000 F3 0.984 0.119 8.237 0.000 F4 1.213 0.115 10.567 0.000 STANDARDIZED MODEL RESULTS STDYX Standardization Two-Tailed Estimate S.E. Est./S.E. P-Value F1 BY Y1 0.894 0.015 59.864 0.000 Y2 0.872 0.016 55.160 0.000 Y3 0.811 0.019 43.281 0.000 F2 BY Y4 0.894 0.015 60.275 0.000 Y5 0.858 0.016 52.512 0.000 Y6 0.828 0.018 46.167 0.000 F3 BY Y7 0.925 0.012 79.008 0.000 Y8 0.859 0.015 57.876 0.000 Y9 0.858 0.015 57.175 0.000 F4 BY Y10 0.900 0.014 64.368 0.000 Y11 0.873 0.015 57.629 0.000 Y12 0.826 0.018 46.877 0.000 F5 BY F1 0.580 0.053 10.851 0.000 F2 0.534 0.053 10.096 0.000 F3 0.626 0.053 11.779 0.000 F4 0.467 0.054 8.658 0.000 Intercepts Y1 0.008 0.045 0.183 0.855 Y2 0.028 0.045 0.617 0.537 Y3 0.005 0.045 0.109 0.913 Y4 0.074 0.045 1.650 0.099 Y5 0.077 0.045 1.728 0.084 Y6 0.075 0.045 1.668 0.095 Y7 0.017 0.045 0.390 0.697 Y8 0.024 0.045 0.545 0.585 Y9 0.033 0.045 0.741 0.459 Y10 -0.012 0.045 -0.261 0.794 Y11 0.009 0.045 0.202 0.840 Y12 0.006 0.045 0.134 0.894 Variances F5 1.000 0.000 999.000 999.000 Residual Variances Y1 0.202 0.027 7.557 0.000 Y2 0.240 0.028 8.689 0.000 Y3 0.342 0.030 11.247 0.000 Y4 0.201 0.026 7.601 0.000 Y5 0.264 0.028 9.403 0.000 Y6 0.315 0.030 10.621 0.000 Y7 0.144 0.022 6.634 0.000 Y8 0.261 0.026 10.236 0.000 Y9 0.263 0.026 10.225 0.000 Y10 0.189 0.025 7.516 0.000 Y11 0.238 0.026 8.981 0.000 Y12 0.317 0.029 10.901 0.000 F1 0.663 0.062 10.679 0.000 F2 0.714 0.057 12.629 0.000 F3 0.609 0.066 9.155 0.000 F4 0.782 0.050 15.527 0.000 STDY Standardization Two-Tailed Estimate S.E. Est./S.E. P-Value F1 BY Y1 0.894 0.015 59.864 0.000 Y2 0.872 0.016 55.160 0.000 Y3 0.811 0.019 43.281 0.000 F2 BY Y4 0.894 0.015 60.275 0.000 Y5 0.858 0.016 52.512 0.000 Y6 0.828 0.018 46.167 0.000 F3 BY Y7 0.925 0.012 79.008 0.000 Y8 0.859 0.015 57.876 0.000 Y9 0.858 0.015 57.175 0.000 F4 BY Y10 0.900 0.014 64.368 0.000 Y11 0.873 0.015 57.629 0.000 Y12 0.826 0.018 46.877 0.000 F5 BY F1 0.580 0.053 10.851 0.000 F2 0.534 0.053 10.096 0.000 F3 0.626 0.053 11.779 0.000 F4 0.467 0.054 8.658 0.000 Intercepts Y1 0.008 0.045 0.183 0.855 Y2 0.028 0.045 0.617 0.537 Y3 0.005 0.045 0.109 0.913 Y4 0.074 0.045 1.650 0.099 Y5 0.077 0.045 1.728 0.084 Y6 0.075 0.045 1.668 0.095 Y7 0.017 0.045 0.390 0.697 Y8 0.024 0.045 0.545 0.585 Y9 0.033 0.045 0.741 0.459 Y10 -0.012 0.045 -0.261 0.794 Y11 0.009 0.045 0.202 0.840 Y12 0.006 0.045 0.134 0.894 Variances F5 1.000 0.000 999.000 999.000 Residual Variances Y1 0.202 0.027 7.557 0.000 Y2 0.240 0.028 8.689 0.000 Y3 0.342 0.030 11.247 0.000 Y4 0.201 0.026 7.601 0.000 Y5 0.264 0.028 9.403 0.000 Y6 0.315 0.030 10.621 0.000 Y7 0.144 0.022 6.634 0.000 Y8 0.261 0.026 10.236 0.000 Y9 0.263 0.026 10.225 0.000 Y10 0.189 0.025 7.516 0.000 Y11 0.238 0.026 8.981 0.000 Y12 0.317 0.029 10.901 0.000 F1 0.663 0.062 10.679 0.000 F2 0.714 0.057 12.629 0.000 F3 0.609 0.066 9.155 0.000 F4 0.782 0.050 15.527 0.000 STD Standardization Two-Tailed Estimate S.E. Est./S.E. P-Value F1 BY Y1 1.174 0.048 24.382 0.000 Y2 0.892 0.038 23.520 0.000 Y3 0.785 0.037 21.235 0.000 F2 BY Y4 1.204 0.049 24.412 0.000 Y5 0.864 0.038 23.002 0.000 Y6 0.847 0.039 21.825 0.000 F3 BY Y7 1.272 0.048 26.282 0.000 Y8 0.893 0.038 23.433 0.000 Y9 0.879 0.038 23.359 0.000 F4 BY Y10 1.245 0.050 24.845 0.000 Y11 0.924 0.039 23.727 0.000 Y12 0.834 0.038 21.875 0.000 F5 BY F1 0.580 0.053 10.851 0.000 F2 0.534 0.053 10.096 0.000 F3 0.626 0.053 11.779 0.000 F4 0.467 0.054 8.658 0.000 Intercepts Y1 0.011 0.059 0.183 0.855 Y2 0.028 0.046 0.617 0.537 Y3 0.005 0.043 0.109 0.913 Y4 0.100 0.060 1.652 0.099 Y5 0.078 0.045 1.730 0.084 Y6 0.076 0.046 1.671 0.095 Y7 0.024 0.061 0.390 0.697 Y8 0.025 0.046 0.545 0.585 Y9 0.034 0.046 0.741 0.458 Y10 -0.016 0.062 -0.261 0.794 Y11 0.010 0.047 0.202 0.840 Y12 0.006 0.045 0.134 0.894 Variances F5 1.000 0.000 999.000 999.000 Residual Variances Y1 0.348 0.043 8.132 0.000 Y2 0.251 0.027 9.465 0.000 Y3 0.320 0.026 12.271 0.000 Y4 0.366 0.045 8.187 0.000 Y5 0.268 0.026 10.303 0.000 Y6 0.330 0.028 11.636 0.000 Y7 0.272 0.038 7.094 0.000 Y8 0.282 0.025 11.445 0.000 Y9 0.276 0.024 11.416 0.000 Y10 0.362 0.045 8.107 0.000 Y11 0.266 0.027 9.854 0.000 Y12 0.323 0.027 11.991 0.000 F1 0.663 0.062 10.679 0.000 F2 0.714 0.057 12.629 0.000 F3 0.609 0.066 9.155 0.000 F4 0.782 0.050 15.527 0.000 R-SQUARE Observed Two-Tailed Variable Estimate S.E. Est./S.E. P-Value Y1 0.798 0.027 29.932 0.000 Y2 0.760 0.028 27.580 0.000 Y3 0.658 0.030 21.641 0.000 Y4 0.799 0.026 30.138 0.000 Y5 0.736 0.028 26.256 0.000 Y6 0.685 0.030 23.083 0.000 Y7 0.856 0.022 39.504 0.000 Y8 0.739 0.026 28.938 0.000 Y9 0.737 0.026 28.588 0.000 Y10 0.811 0.025 32.184 0.000 Y11 0.762 0.026 28.815 0.000 Y12 0.683 0.029 23.439 0.000 Latent Two-Tailed Variable Estimate S.E. Est./S.E. P-Value F1 0.337 0.062 5.425 0.000 F2 0.286 0.057 5.048 0.000 F3 0.391 0.066 5.889 0.000 F4 0.218 0.050 4.329 0.000 QUALITY OF NUMERICAL RESULTS Condition Number for the Information Matrix 0.558E-02 (ratio of smallest to largest eigenvalue) DIAGRAM INFORMATION Use View Diagram under the Diagram menu in the Mplus Editor to view the diagram. If running Mplus from the Mplus Diagrammer, the diagram opens automatically. Diagram output c:\program files\mplus\mplus examples\user's guide examples\mptext1.dgm Beginning Time: 13:53:30 Ending Time: 13:53:31 Elapsed Time: 00:00:01 MUTHEN & MUTHEN 3463 Stoner Ave. Los Angeles, CA 90066 Tel: (310) 391-9971 Fax: (310) 391-8971 Web: www.StatModel.com Support: Support@StatModel.com Copyright (c) 1998-2015 Muthen & Muthen