|
|
(未显示同一用户的13个中间版本) |
第1行: |
第1行: |
− | {| border="1" class="sortable"
| + | ==ANALYSIS命令语法== |
− | !ANALYSIS:
| + | *HTML版请访问:http://www.statmodel.com/HTML_UG/chapter16V8.htm |
− | |-
| + | |
− | |
| + | |
− | |-
| + | ==ANALYSIS子命令== |
− | |
| + | ANALYSIS命令有77条子命令。 |
− | |-
| + | |
− | |
| + | * TYPE = |
− | |-
| + | |
− | |
| + | * ESTIMATOR = |
− | |-
| + | |
− | |
| + | * MODEL = |
− | |-
| + | |
− | |TYPE =
| + | * ALIGNMENT = |
− | |-
| + | |
− | |GENERAL;
| + | * DISTRIBUTION = |
− | |-
| + | |
− | |GENERAL
| + | * PARAMETERIZATION = |
− | |-
| + | |
− | |
| + | * LINK = |
− | |-
| + | |
− | | BASIC;
| + | * ROTATION = |
− | |-
| + | |
− | |
| + | * ROWSTANDARDIZATION = |
− | |-
| + | |
− | |
| + | * PARALLEL = |
− | |-
| + | |
− | | RANDOM;
| + | * REPSE = |
− | |-
| + | |
− | |
| + | * BASEHAZARD = |
− | |-
| + | |
− | |
| + | * CHOLESKY = |
− | |-
| + | |
− | | COMPLEX;
| + | * ALGORITHM = |
− | |-
| + | |
− | |
| + | * INTEGRATION = |
− | |-
| + | |
− | |
| + | * MCSEED = |
− | |-
| + | |
− | |MIXTURE;
| + | * ADAPTIVE = |
− | |-
| + | |
− | | BASIC;
| + | * INFORMATION = |
− | |-
| + | |
− | | RANDOM;
| + | * BOOTSTRAP = |
− | |-
| + | |
− | | COMPLEX;
| + | * LRTBOOTSTRAP = |
− | |-
| + | |
− | |
| + | * STARTS = |
− | |-
| + | |
− | |
| + | * STITERATIONS = |
− | |-
| + | |
− | |TWOLEVEL;
| + | * STCONVERGENCE = |
− | |-
| + | |
− | | BASIC;
| + | * STSCALE = |
− | |-
| + | |
− | | RANDOM;
| + | * STSEED = |
− | |-
| + | |
− | | MIXTURE;
| + | * OPTSEED = |
− | |-
| + | |
− | | COMPLEX;
| + | * K-1STARTS = |
− | |-
| + | |
− | |
| + | * LRTSTARTS = |
− | |-
| + | |
− | |
| + | * RSTARTS = |
− | |-
| + | |
− | |THREELEVEL;
| + | * ASTARTS = |
− | |-
| + | |
− | | BASIC;
| + | * H1STARTS = |
− | |-
| + | |
− | | RANDOM;
| + | * DIFFTEST = |
− | |-
| + | |
− | | COMPLEX;
| + | * MULTIPLIER = |
− | |-
| + | |
− | |
| + | * COVERAGE = |
− | |-
| + | |
− | |
| + | * ADDFREQUENCY = |
− | |-
| + | |
− | |CROSSCLASSIFIED;
| + | * ITERATIONS = |
− | |-
| + | |
− | | RANDOM;
| + | * SDITERATIONS = |
− | |-
| + | |
− | |
| + | * H1ITERATIONS = |
− | |-
| + | |
− | |
| + | * MITERATIONS = |
− | |-
| + | |
− | |EFA # #;
| + | * MCITERATIONS = |
− | |-
| + | |
− | | BASIC;
| + | * MUITERATIONS = |
− | |-
| + | |
− | | MIXTURE;
| + | * RITERATIONS = |
− | |-
| + | |
− | | COMPLEX;
| + | * AITERATIONS = |
− | |-
| + | |
− | | TWOLEVEL;
| + | * CONVERGENCE = |
− | |-
| + | |
− | | EFA # # UW* # # UB*;
| + | * H1CONVERGENCE = |
− | |-
| + | |
− | | EFA # # UW # # UB;
| + | * LOGCRITERION = |
− | |-
| + | |
− | |
| + | * RLOGCRITERION = |
− | |-
| + | |
− | |ESTIMATOR =
| + | * MCONVERGENCE = |
− | |-
| + | |
− | |ML;
| + | * MCCONVERGENCE = |
− | |-
| + | |
− | |depends on
| + | * MUCONVERGENCE = |
− | |-
| + | |
− | |
| + | * RCONVERGENCE = |
− | |-
| + | |
− | |MLM;
| + | * ACONVERGENCE = |
− | |-
| + | |
− | |analysis type
| + | * MIXC = |
− | |-
| + | |
− | |
| + | * MIXU = |
− | |-
| + | |
− | |MLMV;
| + | * LOGHIGH = |
− | |-
| + | |
− | |
| + | * LOGLOW = |
− | |-
| + | |
− | |
| + | * UCELLSIZE = |
− | |-
| + | |
− | |MLR;
| + | * VARIANCE = |
− | |-
| + | |
− | |
| + | * SIMPLICITY = |
− | |-
| + | |
− | |
| + | * TOLERANCE = |
− | |-
| + | |
− | |MLF;
| + | * METRIC= |
− | |-
| + | |
− | |
| + | * MATRIX = |
− | |-
| + | |
− | |
| + | * POINT = |
− | |-
| + | |
− | |MUML;
| + | * CHAINS = |
− | |-
| + | |
− | |
| + | * BSEED = |
− | |-
| + | |
− | |
| + | * STVALUES = |
− | |-
| + | |
− | |WLS;
| + | * MEDIATOR = |
− | |-
| + | |
− | |
| + | * ALGORITHM = |
− | |-
| + | |
− | |
| + | * BCONVERGENCE = |
− | |-
| + | |
− | |WLSM;
| + | * BITERATIONS = |
− | |-
| + | |
− | |
| + | * FBITERATIONS = |
− | |-
| + | |
− | |
| + | * THIN = |
− | |-
| + | |
− | |WLSMV;
| + | * MDITERATIONS = |
− | |-
| + | |
− | |
| + | * KOLMOGOROV = |
− | |-
| + | |
− | |
| + | * PRIOR = |
− | |-
| + | |
− | |ULS;
| + | * INTERACTIVE = |
− | |-
| + | |
− | |
| + | * PROCESSORS = |
− | |-
| |
− | |
| |
− | |-
| |
− | |ULSMV;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |GLS;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |BAYES;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |MODEL =
| |
− | |-
| |
− | |CONFIGURAL;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |METRIC;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |SCALAR;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |NOMEANSTRUCTURE;
| |
− | |-
| |
− | |means
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |NOCOVARIANCES;
| |
− | |-
| |
− | |covariances
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |ALLFREE;
| |
− | |-
| |
− | |equal
| |
− | |-
| |
− | |ALIGNMENT =
| |
− | |-
| |
− | |FIXED;
| |
− | |-
| |
− | |last class
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CONFIGURAL
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |FIXED (reference class CONFIGURAL);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |FIXED (reference class BSEM);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |FREE;
| |
− | |-
| |
− | |last class
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CONFIGURAL
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |FREE (reference class CONFIGURAL);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |FREE (reference class BSEM);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |DISTRIBUTION =
| |
− | |-
| |
− | |NORMAL;
| |
− | |-
| |
− | |NORMAL
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |SKEWNORMAL;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |TDISTRIBUTION;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |SKEWT;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |PARAMETERIZATION =
| |
− | |-
| |
− | |DELTA;
| |
− | |-
| |
− | |DELTA
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |THETA;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |LOGIT;
| |
− | |-
| |
− | |LOGIT
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |LOGLINEAR;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |PROBABILITY;
| |
− | |-
| |
− | |RESCOVARIANCES;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |RESCOV
| |
− | |-
| |
− | |LINK =
| |
− | |-
| |
− | |LOGIT;
| |
− | |-
| |
− | |LOGIT
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |PROBIT;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |ROTATION =
| |
− | |-
| |
− | |GEOMIN;
| |
− | |-
| |
− | |GEOMIN (OBLIQUE value)
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |GEOMIN (OBLIQUE value);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |GEOMIN (ORTHOGONAL value);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |QUARTIMIN;
| |
− | |-
| |
− | |OBLIQUE
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CF-VARIMAX;
| |
− | |-
| |
− | |OBLIQUE
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CF-VARIMAX (OBLIQUE);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CF-VARIMAX (ORTHOGONAL);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CF-QUARTIMAX;
| |
− | |-
| |
− | |OBLIQUE
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CF- QUARTIMAX (OBLIQUE);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CF- QUARTIMAX (ORTHOGONAL);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CF-EQUAMAX;
| |
− | |-
| |
− | |OBLIQUE
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CF- EQUAMAX (OBLIQUE);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CF- EQUAMAX (ORTHOGONAL);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CF-PARSIMAX;
| |
− | |-
| |
− | |OBLIQUE
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CF- PARSIMAX (OBLIQUE);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CF- PARSIMAX (ORTHOGONAL);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CF-FACPARSIM;
| |
− | |-
| |
− | |OBLIQUE
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CF- FACPARSIM (OBLIQUE);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CF- FACPARSIM (ORTHOGONAL);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CRAWFER;
| |
− | |-
| |
− | |OBLIQUE 1/p
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CRAWFER (OBLIQUE value);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CRAWFER (ORTHOGONAL value);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |OBLIMIN;
| |
− | |-
| |
− | |OBLIQUE 0
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |OBLIMIN (OBLIQUE value);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |OBLIMIN (ORTHOGONAL value);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |VARIMAX;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |PROMAX;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |TARGET;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |BI-GEOMIN;
| |
− | |-
| |
− | |OBLIQUE
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |BI-GEOMIN (OBLIQUE);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |BI-GEOMIN (ORTHOGONAL);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |BI-CF-QUARTIMAX;
| |
− | |-
| |
− | |OBLIQUE
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |BI-CF-QUARTIMAX (OBLIQUE);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |BI-CF-QUARTIMAX (ORTHOGONAL);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |ROWSTANDARDIZATION =
| |
− | |-
| |
− | |CORRELATION;
| |
− | |-
| |
− | |CORRELATION
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |KAISER;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |COVARIANCE;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |PARALLEL =
| |
− | |-
| |
− | |number;
| |
− | |-
| |
− | |0
| |
− | |-
| |
− | |REPSE =
| |
− | |-
| |
− | |BOOTSTRAP;
| |
− | |-
| |
− | |JACKKNIFE;
| |
− | |-
| |
− | |JACKKNIFE1;
| |
− | |-
| |
− | |JACKKNIFE2;
| |
− | |-
| |
− | |BRR;
| |
− | |-
| |
− | |FAY (#);
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |.3
| |
− | |-
| |
− | |BASEHAZARD =
| |
− | |-
| |
− | |ON;
| |
− | |-
| |
− | |OFF;
| |
− | |-
| |
− | |ON (EQUAL);
| |
− | |-
| |
− | |ON (UNEQUAL);
| |
− | |-
| |
− | |OFF (EQUAL);
| |
− | |-
| |
− | |OFF (UNEQUAL);
| |
− | |-
| |
− | |depends on
| |
− | |-
| |
− | |analysis type
| |
− | |-
| |
− | |EQUAL
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |EQUAL
| |
− | |-
| |
− | |CHOLESKY =
| |
− | |-
| |
− | |ON;
| |
− | |-
| |
− | |OFF;
| |
− | |-
| |
− | |depends on
| |
− | |-
| |
− | |analysis type
| |
− | |-
| |
− | |ALGORITHM =
| |
− | |-
| |
− | |EM;
| |
− | |-
| |
− | |depends on
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |EMA;
| |
− | |-
| |
− | |analysis type
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |FS;
| |
− | |-
| |
− | |ODLL;
| |
− | |-
| |
− | |INTEGRATION;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |INTEGRATION =
| |
− | |-
| |
− | |number of integration points;
| |
− | |-
| |
− | |STANDARD (number of integration points) ;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |GAUSSHERMITE (number of integration points) ;
| |
− | |-
| |
− | |MONTECARLO (number of integration points);
| |
− | |-
| |
− | |STANDARD
| |
− | |-
| |
− | |depends on
| |
− | |-
| |
− | |analysis type
| |
− | |-
| |
− | |15
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |depends on
| |
− | |-
| |
− | |analysis type
| |
− | |-
| |
− | |MCSEED =
| |
− | |-
| |
− | |random seed for Monte Carlo integration;
| |
− | |-
| |
− | |0
| |
− | |-
| |
− | |ADAPTIVE =
| |
− | |-
| |
− | |ON;
| |
− | |-
| |
− | |OFF;
| |
− | |-
| |
− | |ON
| |
− | |-
| |
− | |INFORMATION =
| |
− | |-
| |
− | |OBSERVED;
| |
− | |-
| |
− | |depends on
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |EXPECTED;
| |
− | |-
| |
− | |analysis type
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |COMBINATION;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |BOOTSTRAP =
| |
− | |-
| |
− | |number of bootstrap draws;
| |
− | |-
| |
− | |number of bootstrap draws (STANDARD);
| |
− | |-
| |
− | |number of bootstrap draws (RESIDUAL):
| |
− | |-
| |
− | |STANDARD
| |
− | |-
| |
− | |LRTBOOTSTRAP =
| |
− | |-
| |
− | |number of bootstrap draws for TECH14;
| |
− | |-
| |
− | |depends on
| |
− | |-
| |
− | |analysis type
| |
− | |-
| |
− | |STARTS =
| |
− | |-
| |
− | |number of initial stage starts and number of final stage optimizations;
| |
− | |-
| |
− | |depends on
| |
− | |-
| |
− | |analysis type
| |
− | |-
| |
− | |STITERATIONS =
| |
− | |-
| |
− | |number of initial stage iterations;
| |
− | |-
| |
− | |10
| |
− | |-
| |
− | |STCONVERGENCE =
| |
− | |-
| |
− | |initial stage convergence criterion;
| |
− | |-
| |
− | |1
| |
− | |-
| |
− | |STSCALE =
| |
− | |-
| |
− | |random start scale;
| |
− | |-
| |
− | |5
| |
− | |-
| |
− | |STSEED =
| |
− | |-
| |
− | |random seed for generating random starts;
| |
− | |-
| |
− | |0
| |
− | |-
| |
− | |OPTSEED =
| |
− | |-
| |
− | |random seed for analysis;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |K-1STARTS =
| |
− | |-
| |
− | |number of initial stage starts and number of final stage optimizations for the k-1 class model for TECH14;
| |
− | |-
| |
− | |20 4
| |
− | |-
| |
− | |LRTSTARTS =
| |
− | |-
| |
− | |number of initial stage starts and number of final stage optimizations for TECH14;
| |
− | |-
| |
− | |0 0 40 8
| |
− | |-
| |
− | |RSTARTS =
| |
− | |-
| |
− | |number of random starts for the rotation algorithm and number of factor solutions printed for exploratory factor analysis;
| |
− | |-
| |
− | |depends on
| |
− | |-
| |
− | |analysis type
| |
− | |-
| |
− | |ASTARTS =
| |
− | |-
| |
− | |number of random starts for the alignment
| |
− | |-
| |
− | |optimization;
| |
− | |-
| |
− | |30
| |
− | |-
| |
− | |H1STARTS =
| |
− | |-
| |
− | |Number of initial stage starts and number of final stage optimizations for the H1 model;
| |
− | |-
| |
− | |0 0
| |
− | |-
| |
− | |DIFFTEST =
| |
− | |-
| |
− | |file name;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |MULTIPLIER =
| |
− | |-
| |
− | |file name;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |COVERAGE =
| |
− | |-
| |
− | |minimum covariance coverage with missing data;
| |
− | |-
| |
− | |.10
| |
− | |-
| |
− | |ADDFREQUENCY =
| |
− | |-
| |
− | |value divided by sample size to add to cells with zero frequency;
| |
− | |-
| |
− | |.5
| |
− | |-
| |
− | |ITERATIONS =
| |
− | |-
| |
− | |maximum number of iterations for the Quasi-Newton algorithm for continuous outcomes;
| |
− | |-
| |
− | |1000
| |
− | |-
| |
− | |SDITERATIONS =
| |
− | |-
| |
− | |maximum number of steepest descent iterations for the Quasi-Newton algorithm for continuous outcomes;
| |
− | |-
| |
− | |20
| |
− | |-
| |
− | |H1ITERATIONS =
| |
− | |-
| |
− | |maximum number of iterations for unrestricted model with missing data;
| |
− | |-
| |
− | |2000
| |
− | |-
| |
− | |MITERATIONS =
| |
− | |-
| |
− | |number of iterations for the EM algorithm;
| |
− | |-
| |
− | |500
| |
− | |-
| |
− | |MCITERATIONS =
| |
− | |-
| |
− | |number of iterations for the M step of the EM algorithm for categorical latent variables;
| |
− | |-
| |
− | |1
| |
− | |-
| |
− | |MUITERATIONS =
| |
− | |-
| |
− | |number of iterations for the M step of the EM algorithm for censored, categorical, and count outcomes;
| |
− | |-
| |
− | |1
| |
− | |-
| |
− | |RITERATIONS =
| |
− | |-
| |
− | |maximum number of iterations in the rotation algorithm for exploratory factor analysis;
| |
− | |-
| |
− | |10000
| |
− | |-
| |
− | |AITERATIONS =
| |
− | |-
| |
− | |maximum number of iterations in the
| |
− | |-
| |
− | |5000
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |alignment optimization;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CONVERGENCE =
| |
− | |-
| |
− | |convergence criterion for the Quasi-Newton algorithm for continuous outcomes;
| |
− | |-
| |
− | |depends on
| |
− | |-
| |
− | |analysis type
| |
− | |-
| |
− | |H1CONVERGENCE =
| |
− | |-
| |
− | |convergence criterion for unrestricted model with missing data;
| |
− | |-
| |
− | |.0001
| |
− | |-
| |
− | |LOGCRITERION =
| |
− | |-
| |
− | |likelihood convergence criterion for the EM algorithm;
| |
− | |-
| |
− | |depends on
| |
− | |-
| |
− | |analysis type
| |
− | |-
| |
− | |RLOGCRITERION =
| |
− | |-
| |
− | |relative likelihood convergence criterion for the EM algorithm;
| |
− | |-
| |
− | |depends on
| |
− | |-
| |
− | |analysis type
| |
− | |-
| |
− | |MCONVERGENCE =
| |
− | |-
| |
− | |convergence criterion for the EM algorithm;
| |
− | |-
| |
− | |depends on
| |
− | |-
| |
− | |analysis type
| |
− | |-
| |
− | |MCCONVERGENCE =
| |
− | |-
| |
− | |convergence criterion for the M step of the EM algorithm for categorical latent variables;
| |
− | |-
| |
− | |.000001
| |
− | |-
| |
− | |MUCONVERGENCE =
| |
− | |-
| |
− | |convergence criterion for the M step of the EM algorithm for censored, categorical, and count outcomes;
| |
− | |-
| |
− | |.000001
| |
− | |-
| |
− | |RCONVERGENCE =
| |
− | |-
| |
− | |convergence criterion for the rotation algorithm for exploratory factor analysis;
| |
− | |-
| |
− | |.00001
| |
− | |-
| |
− | |ACONVERGENCE =
| |
− | |-
| |
− | |convergence criterion for the derivatives of
| |
− | |-
| |
− | |the alignment optimization;.
| |
− | |-
| |
− | |.001
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |MIXC =
| |
− | |-
| |
− | |ITERATIONS;
| |
− | |-
| |
− | |ITERATIONS
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CONVERGENCE;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |M step iteration termination based on number of iterations or convergence for categorical latent variables;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |MIXU =
| |
− | |-
| |
− | |ITERATIONS;
| |
− | |-
| |
− | |ITERATIONS
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CONVERGENCE;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |M step iteration termination based on number of iterations or convergence for censored, categorical, and count outcomes;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |LOGHIGH =
| |
− | |-
| |
− | |max value for logit thresholds;
| |
− | |-
| |
− | |+15
| |
− | |-
| |
− | |LOGLOW =
| |
− | |-
| |
− | |min value for logit thresholds;
| |
− | |-
| |
− | |- 15
| |
− | |-
| |
− | |UCELLSIZE =
| |
− | |-
| |
− | |minimum expected cell size;
| |
− | |-
| |
− | |.01
| |
− | |-
| |
− | |VARIANCE =
| |
− | |-
| |
− | |minimum variance value;
| |
− | |-
| |
− | |.0001
| |
− | |-
| |
− | |SIMPLICITY =
| |
− | |-
| |
− | |SQRT;
| |
− | |-
| |
− | |SQRT
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |FOURTHRT;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |TOLERANCE =
| |
− | |-
| |
− | |simplicity tolerance value;
| |
− | |-
| |
− | |.0001
| |
− | |-
| |
− | |METRIC=
| |
− | |-
| |
− | |REFGROUP;
| |
− | |-
| |
− | |REFGROUP
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |PRODUCT;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |MATRIX =
| |
− | |-
| |
− | |COVARIANCE;
| |
− | |-
| |
− | |COVARIANCE
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |CORRELATION;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |POINT =
| |
− | |-
| |
− | |MEDIAN;
| |
− | |-
| |
− | |MEAN;
| |
− | |-
| |
− | |MODE;
| |
− | |-
| |
− | |MEDIAN
| |
− | |-
| |
− | |CHAINS =
| |
− | |-
| |
− | |number of MCMC chains;
| |
− | |-
| |
− | |2
| |
− | |-
| |
− | |BSEED =
| |
− | |-
| |
− | |seed for MCMC random number generation;
| |
− | |-
| |
− | |0
| |
− | |-
| |
− | |STVALUES =
| |
− | |-
| |
− | |UNPERTURBED;
| |
− | |-
| |
− | |PERTURBED;
| |
− | |-
| |
− | |ML;
| |
− | |-
| |
− | |UNPERTURBED
| |
− | |-
| |
− | |MEDIATOR =
| |
− | |-
| |
− | |LATENT;
| |
− | |-
| |
− | |OBSERVED;
| |
− | |-
| |
− | |depends on
| |
− | |-
| |
− | |analysis type
| |
− | |-
| |
− | |ALGORITHM =
| |
− | |-
| |
− | |GIBBS;
| |
− | |-
| |
− | |GIBBS (PX1);
| |
− | |-
| |
− | |GIBBS (PX2);
| |
− | |-
| |
− | |GIBBS (PX3);
| |
− | |-
| |
− | |GIBBS (RW);
| |
− | |-
| |
− | |MH;
| |
− | |-
| |
− | |GIBBS (PX1)
| |
− | |-
| |
− | |BCONVERGENCE =
| |
− | |-
| |
− | |MCMC convergence criterion using Gelman-Rubin PSR;
| |
− | |-
| |
− | |.05
| |
− | |-
| |
− | |BITERATIONS =
| |
− | |-
| |
− | |maximum and minimum number of iterations for each MCMC chain when Gelman-Rubin PSR is used;
| |
− | |-
| |
− | |50000 0
| |
− | |-
| |
− | |FBITERATIONS =
| |
− | |-
| |
− | |fixed number of iterations for each MCMC chain when Gelman-Rubin PSR is not used;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |THIN =
| |
− | |-
| |
− | |k where every k-th MCMC iteration is saved;
| |
− | |-
| |
− | |1
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |MDITERATIONS =
| |
− | |-
| |
− | |maximum number of iterations used to compute the Bayes multivariate mode;
| |
− | |-
| |
− | |10000
| |
− | |-
| |
− | |KOLMOGOROV =
| |
− | |-
| |
− | |number of draws from the MCMC chains;
| |
− | |-
| |
− | |100
| |
− | |-
| |
− | |PRIOR =
| |
− | |-
| |
− | |number of draws from the prior distribution;
| |
− | |-
| |
− | |1000
| |
− | |-
| |
− | |INTERACTIVE =
| |
− | |-
| |
− | |file name;
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |PROCESSORS =
| |
− | |-
| |
− | |# of processors # of threads;
| |
− | |-
| |
− | |1 1
| |
− | |}
| |