“Mplus ANALYSIS”的版本间的差异

来自OBHRM百科
跳转至: 导航搜索
第1行: 第1行:
 
ANALYSIS命令语法
 
ANALYSIS命令语法
{| <tbody> style=" width: 100%;margin:0px; border: solid 1px #AAAAAA; border-spacing: 5px;"
+
{|style=" width: 100%;margin:0px; border: solid 1px #AAAAAA; border-spacing: 5px;" <tbody>
 
| width="168" | ANALYSIS:
 
| width="168" | ANALYSIS:
 
| width="294" |  
 
| width="294" |  

2017年2月27日 (一) 14:11的版本

ANALYSIS命令语法

ANALYSIS:
TYPE = GENERAL; GENERAL
    BASIC;
    RANDOM;
    COMPLEX;
MIXTURE;

    BASIC;     RANDOM;     COMPLEX;

TWOLEVEL;

    BASIC;     RANDOM;     MIXTURE;     COMPLEX;

THREELEVEL;

    BASIC;     RANDOM;     COMPLEX;

CROSSCLASSIFIED;

    RANDOM;

EFA # #;

    BASIC;     MIXTURE;     COMPLEX;     TWOLEVEL; EFA # # UW* # # UB*; EFA # # UW # # UB;

ESTIMATOR = ML; depends on
MLM; analysis type
MLMV;
MLR;
MLF;
MUML;
WLS;
WLSM;
WLSMV;
ULS;
ULSMV;
GLS;
BAYES;
MODEL = CONFIGURAL;
METRIC;
SCALAR;
NOMEANSTRUCTURE; means
NOCOVARIANCES; covariances
ALLFREE; equal
ALIGNMENT = FIXED; last class
CONFIGURAL
FIXED (reference class CONFIGURAL);
FIXED (reference class BSEM);
FREE; last class
CONFIGURAL
FREE (reference class CONFIGURAL);
FREE (reference class BSEM);
DISTRIBUTION = NORMAL; NORMAL
SKEWNORMAL;
TDISTRIBUTION;
SKEWT;
PARAMETERIZATION = DELTA; DELTA
THETA;
LOGIT; LOGIT
LOGLINEAR;
PROBABILITY;

RESCOVARIANCES;

RESCOV

LINK = LOGIT; LOGIT
PROBIT;
ROTATION = GEOMIN; GEOMIN (OBLIQUE value)
GEOMIN (OBLIQUE value);
GEOMIN (ORTHOGONAL value);
QUARTIMIN; OBLIQUE
CF-VARIMAX; OBLIQUE
CF-VARIMAX (OBLIQUE);
CF-VARIMAX (ORTHOGONAL);
CF-QUARTIMAX; OBLIQUE
CF- QUARTIMAX (OBLIQUE);
CF- QUARTIMAX (ORTHOGONAL);
CF-EQUAMAX; OBLIQUE
CF- EQUAMAX (OBLIQUE);
CF- EQUAMAX (ORTHOGONAL);
CF-PARSIMAX; OBLIQUE
CF- PARSIMAX (OBLIQUE);
CF- PARSIMAX (ORTHOGONAL);
CF-FACPARSIM; OBLIQUE
CF- FACPARSIM (OBLIQUE);
CF- FACPARSIM (ORTHOGONAL);
CRAWFER; OBLIQUE 1/p
CRAWFER (OBLIQUE value);
CRAWFER (ORTHOGONAL value);
OBLIMIN; OBLIQUE 0
OBLIMIN (OBLIQUE value);
OBLIMIN (ORTHOGONAL value);
VARIMAX;
PROMAX;
TARGET;
BI-GEOMIN; OBLIQUE
BI-GEOMIN (OBLIQUE);
BI-GEOMIN (ORTHOGONAL);
BI-CF-QUARTIMAX; OBLIQUE
BI-CF-QUARTIMAX (OBLIQUE);
BI-CF-QUARTIMAX (ORTHOGONAL);
ROWSTANDARDIZATION = CORRELATION; CORRELATION
KAISER;
COVARIANCE;
PARALLEL = number; 0
REPSE = BOOTSTRAP;

JACKKNIFE; JACKKNIFE1; JACKKNIFE2; BRR; FAY (#);


.3

BASEHAZARD = ON;

OFF; ON (EQUAL); ON (UNEQUAL); OFF (EQUAL); OFF (UNEQUAL);

depends on

analysis type EQUAL

EQUAL

CHOLESKY = ON;

OFF;

depends on

analysis type

ALGORITHM = EM; depends on
EMA; analysis type
FS;

ODLL; INTEGRATION;

INTEGRATION = number of integration points;

STANDARD (number of integration points) ;

GAUSSHERMITE (number of integration points) ; MONTECARLO (number of integration points);

STANDARD

depends on analysis type 15

depends on analysis type

MCSEED = random seed for Monte Carlo integration; 0
ADAPTIVE = ON;

OFF;

ON
INFORMATION = OBSERVED; depends on
EXPECTED; analysis type
COMBINATION;
BOOTSTRAP = number of bootstrap draws;

number of bootstrap draws (STANDARD); number of bootstrap draws (RESIDUAL):

STANDARD
LRTBOOTSTRAP = number of bootstrap draws for TECH14; depends on

analysis type

STARTS = number of initial stage starts and number of final stage optimizations; depends on

analysis type

STITERATIONS = number of initial stage iterations; 10
STCONVERGENCE = initial stage convergence criterion; 1
STSCALE = random start scale; 5
STSEED = random seed for generating random starts; 0
OPTSEED = random seed for analysis;
K-1STARTS = number of initial stage starts and number of final stage optimizations for the k-1 class model for TECH14; 20 4
LRTSTARTS = number of initial stage starts and number of final stage optimizations for TECH14; 0 0 40 8
RSTARTS = number of random starts for the rotation algorithm and number of factor solutions printed for exploratory factor analysis; depends on

analysis type

ASTARTS = number of random starts for the alignment

optimization;

30
H1STARTS = Number of initial stage starts and number of final stage optimizations for the H1 model; 0 0
DIFFTEST = file name;
MULTIPLIER = file name;
COVERAGE = minimum covariance coverage with missing data; .10
ADDFREQUENCY = value divided by sample size to add to cells with zero frequency; .5
ITERATIONS = maximum number of iterations for the Quasi-Newton algorithm for continuous outcomes; 1000
SDITERATIONS = maximum number of steepest descent iterations for the Quasi-Newton algorithm for continuous outcomes; 20
H1ITERATIONS = maximum number of iterations for unrestricted model with missing data; 2000
MITERATIONS = number of iterations for the EM algorithm; 500
MCITERATIONS = number of iterations for the M step of the EM algorithm for categorical latent variables; 1
MUITERATIONS = number of iterations for the M step of the EM algorithm for censored, categorical, and count outcomes; 1
RITERATIONS = maximum number of iterations in the rotation algorithm for exploratory factor analysis; 10000
AITERATIONS = maximum number of iterations in the 5000
alignment optimization;
CONVERGENCE = convergence criterion for the Quasi-Newton algorithm for continuous outcomes; depends on

analysis type

H1CONVERGENCE = convergence criterion for unrestricted model with missing data; .0001
LOGCRITERION = likelihood convergence criterion for the EM algorithm; depends on

analysis type

RLOGCRITERION = relative likelihood convergence criterion for the EM algorithm; depends on

analysis type

MCONVERGENCE = convergence criterion for the EM algorithm; depends on

analysis type

MCCONVERGENCE = convergence criterion for the M step of the EM algorithm for categorical latent variables; .000001
MUCONVERGENCE = convergence criterion for the M step of the EM algorithm for censored, categorical, and count outcomes; .000001
RCONVERGENCE = convergence criterion for the rotation algorithm for exploratory factor analysis; .00001
ACONVERGENCE = convergence criterion for the derivatives of

the alignment optimization;.

.001
MIXC = ITERATIONS; ITERATIONS
CONVERGENCE;
M step iteration termination based on number of iterations or convergence for categorical latent variables;
MIXU = ITERATIONS; ITERATIONS
CONVERGENCE;
M step iteration termination based on number of iterations or convergence for censored, categorical, and count outcomes;
LOGHIGH = max value for logit thresholds; +15
LOGLOW = min value for logit thresholds; - 15
UCELLSIZE = minimum expected cell size; .01
VARIANCE = minimum variance value; .0001
SIMPLICITY = SQRT; SQRT
FOURTHRT;
TOLERANCE = simplicity tolerance value; .0001
METRIC= REFGROUP; REFGROUP
PRODUCT;
MATRIX = COVARIANCE; COVARIANCE
CORRELATION;
POINT = MEDIAN;

MEAN; MODE;

MEDIAN
CHAINS = number of MCMC chains; 2
BSEED = seed for MCMC random number generation; 0
STVALUES = UNPERTURBED;

PERTURBED; ML;

UNPERTURBED
MEDIATOR = LATENT;

OBSERVED;

depends on

analysis type

ALGORITHM = GIBBS;

GIBBS (PX1); GIBBS (PX2); GIBBS (PX3); GIBBS (RW); MH;

GIBBS (PX1)
BCONVERGENCE = MCMC convergence criterion using Gelman-Rubin PSR; .05
BITERATIONS = maximum and minimum number of iterations for each MCMC chain when Gelman-Rubin PSR is used; 50000 0
FBITERATIONS = fixed number of iterations for each MCMC chain when Gelman-Rubin PSR is not used;
THIN = k where every k-th MCMC iteration is saved; 1
MDITERATIONS = maximum number of iterations used to compute the Bayes multivariate mode; 10000
KOLMOGOROV = number of draws from the MCMC chains; 100
PRIOR = number of draws from the prior distribution; 1000
INTERACTIVE = file name;
PROCESSORS = # of processors # of threads; 1 1</tbody>