“Mplus ANALYSIS”的版本间的差异
Lichaoping(讨论 | 贡献) (以“ANALYSIS”替换内容) |
Lichaoping(讨论 | 贡献) |
||
第1行: | 第1行: | ||
− | ANALYSIS | + | ANALYSIS命令语法 |
+ | {| <tbody> | ||
+ | | width="168" | ANALYSIS: | ||
+ | | width="294" | | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | TYPE = | ||
+ | | width="294" | <strong>GEN</strong>ERAL; | ||
+ | | width="120" | GENERAL | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong> BAS</strong>IC; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong> RAND</strong>OM; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong> COM</strong>PLEX; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>MIX</strong>TURE; | ||
+ | <strong> BAS</strong>IC; | ||
+ | <strong> RAND</strong>OM; | ||
+ | <strong> COM</strong>PLEX; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>TWO</strong>LEVEL; | ||
+ | <strong> BAS</strong>IC; | ||
+ | <strong> RAND</strong>OM; | ||
+ | <strong> MIX</strong>TURE; | ||
+ | <strong> COM</strong>PLEX; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>THREE</strong>LEVEL; | ||
+ | <strong> BAS</strong>IC; | ||
+ | <strong> RAND</strong>OM; | ||
+ | <strong> COM</strong>PLEX; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CROSS</strong>CLASSIFIED; | ||
+ | <strong> RAND</strong>OM; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | EFA # #; | ||
+ | <strong> BAS</strong>IC; | ||
+ | <strong> MIX</strong>TURE; | ||
+ | <strong> COM</strong>PLEX; | ||
+ | <strong> TWO</strong>LEVEL; | ||
+ | EFA # # UW* # # UB*; | ||
+ | EFA # # UW # # UB; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | ESTIMATOR = | ||
+ | | width="294" | ML; | ||
+ | | width="120" | depends on | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | MLM; | ||
+ | | width="120" | analysis type | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | MLMV; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | MLR; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | MLF; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | MUML; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | WLS; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | WLSM; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | WLSMV; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | ULS; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | ULSMV; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | GLS; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | BAYES; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | MODEL = | ||
+ | | width="294" | <strong>CONFIG</strong>URAL; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | METRIC; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | SCALAR; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>NOMEAN</strong>STRUCTURE; | ||
+ | | width="120" | means | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>NOCOV</strong>ARIANCES; | ||
+ | | width="120" | covariances | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>ALL</strong>FREE; | ||
+ | | width="120" | equal | ||
+ | |- | ||
+ | | width="168" | ALIGNMENT = | ||
+ | | width="294" | FIXED; | ||
+ | | width="120" | last class | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | | ||
+ | | width="120" | CONFIGURAL | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | FIXED (reference class <strong>CONFIG</strong>URAL); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | FIXED (reference class BSEM); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | FREE; | ||
+ | | width="120" | last class | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | | ||
+ | | width="120" | CONFIGURAL | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | FREE (reference class <strong>CONFIG</strong>URAL); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | FREE (reference class BSEM); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | DISTRIBUTION = | ||
+ | | width="294" | <strong>NORM</strong>AL; | ||
+ | | width="120" | NORMAL | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>SKEW</strong>NORMAL; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>TDIST</strong>RIBUTION; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | SKEWT; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | PARAMETERIZATION = | ||
+ | | width="294" | DELTA; | ||
+ | | width="120" | DELTA | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | THETA; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | LOGIT; | ||
+ | | width="120" | LOGIT | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>LOGLIN</strong>EAR; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>PROB</strong>ABILITY; | ||
+ | <strong>RESCOV</strong>ARIANCES; | ||
+ | | width="120" | | ||
+ | RESCOV | ||
+ | |- | ||
+ | | width="168" | LINK = | ||
+ | | width="294" | <strong>LOG</strong>IT; | ||
+ | | width="120" | LOGIT | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>PROB</strong>IT; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | ROTATION = | ||
+ | | width="294" | <strong>GEO</strong>MIN; | ||
+ | | width="120" | GEOMIN (OBLIQUE value) | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>GEO</strong>MIN (<strong>OB</strong>LIQUE value); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>GEO</strong>MIN (<strong>OR</strong>THOGONAL value); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>QUART</strong>IMIN; | ||
+ | | width="120" | OBLIQUE | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CF-V</strong>ARIMAX; | ||
+ | | width="120" | OBLIQUE | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CF-V</strong>ARIMAX (<strong>OB</strong>LIQUE); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CF-V</strong>ARIMAX (<strong>OR</strong>THOGONAL); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CF-Q</strong>UARTIMAX; | ||
+ | | width="120" | OBLIQUE | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CF- Q</strong>UARTIMAX (<strong>OB</strong>LIQUE); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CF- Q</strong>UARTIMAX (<strong>OR</strong>THOGONAL); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CF-E</strong>QUAMAX; | ||
+ | | width="120" | OBLIQUE | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CF- E</strong>QUAMAX (<strong>OB</strong>LIQUE); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CF- E</strong>QUAMAX (<strong>OR</strong>THOGONAL); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CF-P</strong>ARSIMAX; | ||
+ | | width="120" | OBLIQUE | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CF- P</strong>ARSIMAX (<strong>OB</strong>LIQUE); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CF- P</strong>ARSIMAX (<strong>OR</strong>THOGONAL); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CF-F</strong>ACPARSIM; | ||
+ | | width="120" | OBLIQUE | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CF- F</strong>ACPARSIM (<strong>OB</strong>LIQUE); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CF- F</strong>ACPARSIM (<strong>OR</strong>THOGONAL); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CRAW</strong>FER; | ||
+ | | width="120" | OBLIQUE 1/p | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CRAW</strong>FER (<strong>OB</strong>LIQUE value); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CRAW</strong>FER (<strong>OR</strong>THOGONAL value); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>OBLIM</strong>IN; | ||
+ | | width="120" | OBLIQUE 0 | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>OBLIM</strong>IN (<strong>OB</strong>LIQUE value); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>OBLIM</strong>IN (<strong>OR</strong>THOGONAL value); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>VAR</strong>IMAX; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>PRO</strong>MAX; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>TAR</strong>GET; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>BI-GEO</strong>MIN; | ||
+ | | width="120" | OBLIQUE | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>BI-GEO</strong>MIN (<strong>OB</strong>LIQUE); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>BI-GEO</strong>MIN (<strong>OR</strong>THOGONAL); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>BI-CF-Q</strong>UARTIMAX; | ||
+ | | width="120" | OBLIQUE | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>BI-CF-Q</strong>UARTIMAX (<strong>OB</strong>LIQUE); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>BI-CF-Q</strong>UARTIMAX (<strong>OR</strong>THOGONAL); | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | ROWSTANDARDIZATION = | ||
+ | | width="294" | <strong>CORR</strong>ELATION; | ||
+ | | width="120" | CORRELATION | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>KAIS</strong>ER; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>COVA</strong>RIANCE; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | PARALLEL = | ||
+ | | width="294" | number; | ||
+ | | width="120" | 0 | ||
+ | |- | ||
+ | | width="168" | REPSE = | ||
+ | | width="294" | <strong>BOOT</strong>STRAP; | ||
+ | <strong>JACK</strong>KNIFE; | ||
+ | <strong>JACK</strong>KNIFE<strong>1</strong>; | ||
+ | <strong>JACK</strong>KNIFE<strong>2</strong>; | ||
+ | BRR; | ||
+ | FAY (#); | ||
+ | | width="120" | | ||
+ | |||
+ | |||
+ | |||
+ | .3 | ||
+ | |- | ||
+ | | width="168" | BASEHAZARD = | ||
+ | | width="294" | ON; | ||
+ | OFF; | ||
+ | ON (<strong>EQ</strong>UAL); | ||
+ | ON (<strong>UNEQ</strong>UAL); | ||
+ | OFF (<strong>EQ</strong>UAL); | ||
+ | OFF (<strong>UNEQ</strong>UAL); | ||
+ | | width="120" | depends on | ||
+ | analysis type | ||
+ | EQUAL | ||
+ | |||
+ | EQUAL | ||
+ | |- | ||
+ | | width="168" | CHOLESKY = | ||
+ | | width="294" | ON; | ||
+ | OFF; | ||
+ | | width="120" | depends on | ||
+ | analysis type | ||
+ | |- | ||
+ | | width="168" | ALGORITHM = | ||
+ | | width="294" | EM; | ||
+ | | width="120" | depends on | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | EMA; | ||
+ | | width="120" | analysis type | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | FS; | ||
+ | ODLL; | ||
+ | <strong>INT</strong>EGRATION; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | INTEGRATION = | ||
+ | | width="294" | number of integration points; | ||
+ | <strong>STAND</strong>ARD (number of integration points) ; | ||
+ | |||
+ | <strong>GAUSS</strong>HERMITE (number of integration points) ; | ||
+ | <strong>MONTE</strong>CARLO (number of integration points); | ||
+ | | width="120" | STANDARD | ||
+ | depends on | ||
+ | analysis type | ||
+ | 15 | ||
+ | |||
+ | depends on | ||
+ | analysis type | ||
+ | |- | ||
+ | | width="168" | MCSEED = | ||
+ | | width="294" | random seed for Monte Carlo integration; | ||
+ | | width="120" | 0 | ||
+ | |- | ||
+ | | width="168" | ADAPTIVE = | ||
+ | | width="294" | ON; | ||
+ | OFF; | ||
+ | | width="120" | ON | ||
+ | |- | ||
+ | | width="168" | INFORMATION = | ||
+ | | width="294" | <strong>OBS</strong>ERVED; | ||
+ | | width="120" | depends on | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>EXP</strong>ECTED; | ||
+ | | width="120" | analysis type | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>COMB</strong>INATION; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | BOOTSTRAP = | ||
+ | | width="294" | number of bootstrap draws; | ||
+ | number of bootstrap draws (<strong>STAND</strong>ARD); | ||
+ | number of bootstrap draws (<strong>RES</strong>IDUAL): | ||
+ | | width="120" | STANDARD | ||
+ | |- | ||
+ | | width="168" | LRTBOOTSTRAP = | ||
+ | | width="294" | number of bootstrap draws for TECH14; | ||
+ | | width="120" | depends on | ||
+ | analysis type | ||
+ | |- | ||
+ | | width="168" | STARTS = | ||
+ | | width="294" | number of initial stage starts and number of final stage optimizations; | ||
+ | | width="120" | depends on | ||
+ | analysis type | ||
+ | |- | ||
+ | | width="168" | STITERATIONS = | ||
+ | | width="294" | number of initial stage iterations; | ||
+ | | width="120" | 10 | ||
+ | |- | ||
+ | | width="168" | STCONVERGENCE = | ||
+ | | width="294" | initial stage convergence criterion; | ||
+ | | width="120" | 1 | ||
+ | |- | ||
+ | | width="168" | STSCALE = | ||
+ | | width="294" | random start scale; | ||
+ | | width="120" | 5 | ||
+ | |- | ||
+ | | width="168" | STSEED = | ||
+ | | width="294" | random seed for generating random starts; | ||
+ | | width="120" | 0 | ||
+ | |- | ||
+ | | width="168" | OPTSEED = | ||
+ | | width="294" | random seed for analysis; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | K-1STARTS = | ||
+ | | width="294" | number of initial stage starts and number of final stage optimizations for the k-1 class model for TECH14; | ||
+ | | width="120" | 20 4 | ||
+ | |- | ||
+ | | width="168" | LRTSTARTS = | ||
+ | | width="294" | number of initial stage starts and number of final stage optimizations for TECH14; | ||
+ | | width="120" | 0 0 40 8 | ||
+ | |- | ||
+ | | width="168" | RSTARTS = | ||
+ | | width="294" | number of random starts for the rotation algorithm and number of factor solutions printed for exploratory factor analysis; | ||
+ | | width="120" | depends on | ||
+ | analysis type | ||
+ | |- | ||
+ | | width="168" | ASTARTS = | ||
+ | | width="294" | number of random starts for the alignment | ||
+ | optimization; | ||
+ | | width="120" | 30 | ||
+ | |- | ||
+ | | width="168" | H1STARTS = | ||
+ | | width="294" | Number of initial stage starts and number of final stage optimizations for the H1 model; | ||
+ | | width="120" | 0 0 | ||
+ | |- | ||
+ | | width="168" | DIFFTEST = | ||
+ | | width="294" | file name; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | MULTIPLIER = | ||
+ | | width="294" | file name; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | COVERAGE = | ||
+ | | width="294" | minimum covariance coverage with missing data; | ||
+ | | width="120" | .10 | ||
+ | |- | ||
+ | | width="168" | ADDFREQUENCY = | ||
+ | | width="294" | value divided by sample size to add to cells with zero frequency; | ||
+ | | width="120" | .5 | ||
+ | |- | ||
+ | | width="168" | ITERATIONS = | ||
+ | | width="294" | maximum number of iterations for the Quasi-Newton algorithm for continuous outcomes; | ||
+ | | width="120" | 1000 | ||
+ | |- | ||
+ | | width="168" | SDITERATIONS = | ||
+ | | width="294" | maximum number of steepest descent iterations for the Quasi-Newton algorithm for continuous outcomes; | ||
+ | | width="120" | 20 | ||
+ | |- | ||
+ | | width="168" | H1ITERATIONS = | ||
+ | | width="294" | maximum number of iterations for unrestricted model with missing data; | ||
+ | | width="120" | 2000 | ||
+ | |- | ||
+ | | width="168" | MITERATIONS = | ||
+ | | width="294" | number of iterations for the EM algorithm; | ||
+ | | width="120" | 500 | ||
+ | |- | ||
+ | | width="168" | MCITERATIONS = | ||
+ | | width="294" | number of iterations for the M step of the EM algorithm for categorical latent variables; | ||
+ | | width="120" | 1 | ||
+ | |- | ||
+ | | width="168" | MUITERATIONS = | ||
+ | | width="294" | number of iterations for the M step of the EM algorithm for censored, categorical, and count outcomes; | ||
+ | | width="120" | 1 | ||
+ | |- | ||
+ | | width="168" | RITERATIONS = | ||
+ | | width="294" | maximum number of iterations in the rotation algorithm for exploratory factor analysis; | ||
+ | | width="120" | 10000 | ||
+ | |- | ||
+ | | width="168" | AITERATIONS = | ||
+ | | width="294" | maximum number of iterations in the | ||
+ | | width="120" | 5000 | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | alignment optimization; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | CONVERGENCE = | ||
+ | | width="294" | convergence criterion for the Quasi-Newton algorithm for continuous outcomes; | ||
+ | | width="120" | depends on | ||
+ | analysis type | ||
+ | |- | ||
+ | | width="168" | H1CONVERGENCE = | ||
+ | | width="294" | convergence criterion for unrestricted model with missing data; | ||
+ | | width="120" | .0001 | ||
+ | |- | ||
+ | | width="168" | LOGCRITERION = | ||
+ | | width="294" | likelihood convergence criterion for the EM algorithm; | ||
+ | | width="120" | depends on | ||
+ | analysis type | ||
+ | |- | ||
+ | | width="168" | RLOGCRITERION = | ||
+ | | width="294" | relative likelihood convergence criterion for the EM algorithm; | ||
+ | | width="120" | depends on | ||
+ | analysis type | ||
+ | |- | ||
+ | | width="168" | MCONVERGENCE = | ||
+ | | width="294" | convergence criterion for the EM algorithm; | ||
+ | | width="120" | depends on | ||
+ | analysis type | ||
+ | |- | ||
+ | | width="168" | MCCONVERGENCE = | ||
+ | | width="294" | convergence criterion for the M step of the EM algorithm for categorical latent variables; | ||
+ | | width="120" | .000001 | ||
+ | |- | ||
+ | | width="168" | MUCONVERGENCE = | ||
+ | | width="294" | convergence criterion for the M step of the EM algorithm for censored, categorical, and count outcomes; | ||
+ | | width="120" | .000001 | ||
+ | |- | ||
+ | | width="168" | RCONVERGENCE = | ||
+ | | width="294" | convergence criterion for the rotation algorithm for exploratory factor analysis; | ||
+ | | width="120" | .00001 | ||
+ | |- | ||
+ | | width="168" | ACONVERGENCE = | ||
+ | | width="294" | convergence criterion for the derivatives of | ||
+ | the alignment optimization;. | ||
+ | | width="120" | .001 | ||
+ | |- | ||
+ | | width="168" | MIXC = | ||
+ | | width="294" | <strong>ITER</strong>ATIONS; | ||
+ | | width="120" | ITERATIONS | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CONV</strong>ERGENCE; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | M step iteration termination based on number of iterations or convergence for categorical latent variables; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | MIXU = | ||
+ | | width="294" | <strong>ITER</strong>ATIONS; | ||
+ | | width="120" | ITERATIONS | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CONV</strong>ERGENCE; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | M step iteration termination based on number of iterations or convergence for censored, categorical, and count outcomes; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | LOGHIGH = | ||
+ | | width="294" | max value for logit thresholds; | ||
+ | | width="120" | +15 | ||
+ | |- | ||
+ | | width="168" | LOGLOW = | ||
+ | | width="294" | min value for logit thresholds; | ||
+ | | width="120" | - 15 | ||
+ | |- | ||
+ | | width="168" | UCELLSIZE = | ||
+ | | width="294" | minimum expected cell size; | ||
+ | | width="120" | .01 | ||
+ | |- | ||
+ | | width="168" | VARIANCE = | ||
+ | | width="294" | minimum variance value; | ||
+ | | width="120" | .0001 | ||
+ | |- | ||
+ | | width="168" | SIMPLICITY = | ||
+ | | width="294" | SQRT; | ||
+ | | width="120" | SQRT | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>FOUR</strong>THRT; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | TOLERANCE = | ||
+ | | width="294" | simplicity tolerance value; | ||
+ | | width="120" | .0001 | ||
+ | |- | ||
+ | | width="168" | METRIC= | ||
+ | | width="294" | <strong>REFG</strong>ROUP; | ||
+ | | width="120" | REFGROUP | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>PROD</strong>UCT; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | MATRIX = | ||
+ | | width="294" | <strong>COVA</strong>RIANCE; | ||
+ | | width="120" | COVARIANCE | ||
+ | |- | ||
+ | | width="168" | | ||
+ | | width="294" | <strong>CORR</strong>ELATION; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | POINT = | ||
+ | | width="294" | <strong>MED</strong>IAN; | ||
+ | MEAN; | ||
+ | MODE; | ||
+ | | width="120" | MEDIAN | ||
+ | |- | ||
+ | | width="168" | CHAINS = | ||
+ | | width="294" | number of MCMC chains; | ||
+ | | width="120" | 2 | ||
+ | |- | ||
+ | | width="168" | BSEED = | ||
+ | | width="294" | seed for MCMC random number generation; | ||
+ | | width="120" | 0 | ||
+ | |- | ||
+ | | width="168" | STVALUES = | ||
+ | | width="294" | <strong>UNPER</strong>TURBED; | ||
+ | <strong>PERT</strong>URBED; | ||
+ | ML; | ||
+ | | width="120" | UNPERTURBED | ||
+ | |- | ||
+ | | width="168" | MEDIATOR = | ||
+ | | width="294" | <strong>LAT</strong>ENT; | ||
+ | <strong>OBS</strong>ERVED; | ||
+ | | width="120" | depends on | ||
+ | analysis type | ||
+ | |- | ||
+ | | width="168" | ALGORITHM = | ||
+ | | width="294" | GIBBS; | ||
+ | GIBBS (PX1); | ||
+ | GIBBS (PX2); | ||
+ | GIBBS (PX3); | ||
+ | GIBBS (RW); | ||
+ | MH; | ||
+ | | width="120" | GIBBS (PX1) | ||
+ | |- | ||
+ | | width="168" | BCONVERGENCE = | ||
+ | | width="294" | MCMC convergence criterion using Gelman-Rubin PSR; | ||
+ | | width="120" | .05 | ||
+ | |- | ||
+ | | width="168" | BITERATIONS = | ||
+ | | width="294" | maximum and minimum number of iterations for each MCMC chain when Gelman-Rubin PSR is used; | ||
+ | | width="120" | 50000 0 | ||
+ | |- | ||
+ | | width="168" | FBITERATIONS = | ||
+ | | width="294" | fixed number of iterations for each MCMC chain when Gelman-Rubin PSR is not used; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | THIN = | ||
+ | | width="294" | k where every k-th MCMC iteration is saved; | ||
+ | | width="120" | 1 | ||
+ | |- | ||
+ | | width="168" | MDITERATIONS = | ||
+ | | width="294" | maximum number of iterations used to compute the Bayes multivariate mode; | ||
+ | | width="120" | 10000 | ||
+ | |- | ||
+ | | width="168" | KOLMOGOROV = | ||
+ | | width="294" | number of draws from the MCMC chains; | ||
+ | | width="120" | 100 | ||
+ | |- | ||
+ | | width="168" | PRIOR = | ||
+ | | width="294" | number of draws from the prior distribution; | ||
+ | | width="120" | 1000 | ||
+ | |- | ||
+ | | width="168" | INTERACTIVE = | ||
+ | | width="294" | file name; | ||
+ | | width="120" | | ||
+ | |- | ||
+ | | width="168" | PROCESSORS = | ||
+ | | width="294" | # of processors # of threads; | ||
+ | | width="120" | 1 1</tbody> | ||
+ | |} |
2017年2月27日 (一) 14:04的版本
ANALYSIS命令语法
ANALYSIS: | ||
TYPE = | GENERAL; | GENERAL |
BASIC; | ||
RANDOM; | ||
COMPLEX; | ||
MIXTURE;
BASIC; RANDOM; COMPLEX; |
||
TWOLEVEL;
BASIC; RANDOM; MIXTURE; COMPLEX; |
||
THREELEVEL;
BASIC; RANDOM; COMPLEX; |
||
CROSSCLASSIFIED;
RANDOM; |
||
EFA # #;
BASIC; MIXTURE; COMPLEX; TWOLEVEL; EFA # # UW* # # UB*; EFA # # UW # # UB; |
||
ESTIMATOR = | ML; | depends on |
MLM; | analysis type | |
MLMV; | ||
MLR; | ||
MLF; | ||
MUML; | ||
WLS; | ||
WLSM; | ||
WLSMV; | ||
ULS; | ||
ULSMV; | ||
GLS; | ||
BAYES; | ||
MODEL = | CONFIGURAL; | |
METRIC; | ||
SCALAR; | ||
NOMEANSTRUCTURE; | means | |
NOCOVARIANCES; | covariances | |
ALLFREE; | equal | |
ALIGNMENT = | FIXED; | last class |
CONFIGURAL | ||
FIXED (reference class CONFIGURAL); | ||
FIXED (reference class BSEM); | ||
FREE; | last class | |
CONFIGURAL | ||
FREE (reference class CONFIGURAL); | ||
FREE (reference class BSEM); | ||
DISTRIBUTION = | NORMAL; | NORMAL |
SKEWNORMAL; | ||
TDISTRIBUTION; | ||
SKEWT; | ||
PARAMETERIZATION = | DELTA; | DELTA |
THETA; | ||
LOGIT; | LOGIT | |
LOGLINEAR; | ||
PROBABILITY;
RESCOVARIANCES; |
RESCOV | |
LINK = | LOGIT; | LOGIT |
PROBIT; | ||
ROTATION = | GEOMIN; | GEOMIN (OBLIQUE value) |
GEOMIN (OBLIQUE value); | ||
GEOMIN (ORTHOGONAL value); | ||
QUARTIMIN; | OBLIQUE | |
CF-VARIMAX; | OBLIQUE | |
CF-VARIMAX (OBLIQUE); | ||
CF-VARIMAX (ORTHOGONAL); | ||
CF-QUARTIMAX; | OBLIQUE | |
CF- QUARTIMAX (OBLIQUE); | ||
CF- QUARTIMAX (ORTHOGONAL); | ||
CF-EQUAMAX; | OBLIQUE | |
CF- EQUAMAX (OBLIQUE); | ||
CF- EQUAMAX (ORTHOGONAL); | ||
CF-PARSIMAX; | OBLIQUE | |
CF- PARSIMAX (OBLIQUE); | ||
CF- PARSIMAX (ORTHOGONAL); | ||
CF-FACPARSIM; | OBLIQUE | |
CF- FACPARSIM (OBLIQUE); | ||
CF- FACPARSIM (ORTHOGONAL); | ||
CRAWFER; | OBLIQUE 1/p | |
CRAWFER (OBLIQUE value); | ||
CRAWFER (ORTHOGONAL value); | ||
OBLIMIN; | OBLIQUE 0 | |
OBLIMIN (OBLIQUE value); | ||
OBLIMIN (ORTHOGONAL value); | ||
VARIMAX; | ||
PROMAX; | ||
TARGET; | ||
BI-GEOMIN; | OBLIQUE | |
BI-GEOMIN (OBLIQUE); | ||
BI-GEOMIN (ORTHOGONAL); | ||
BI-CF-QUARTIMAX; | OBLIQUE | |
BI-CF-QUARTIMAX (OBLIQUE); | ||
BI-CF-QUARTIMAX (ORTHOGONAL); | ||
ROWSTANDARDIZATION = | CORRELATION; | CORRELATION |
KAISER; | ||
COVARIANCE; | ||
PARALLEL = | number; | 0 |
REPSE = | BOOTSTRAP;
JACKKNIFE; JACKKNIFE1; JACKKNIFE2; BRR; FAY (#); |
.3 |
BASEHAZARD = | ON;
OFF; ON (EQUAL); ON (UNEQUAL); OFF (EQUAL); OFF (UNEQUAL); |
depends on
analysis type EQUAL EQUAL |
CHOLESKY = | ON;
OFF; |
depends on
analysis type |
ALGORITHM = | EM; | depends on |
EMA; | analysis type | |
FS;
ODLL; INTEGRATION; |
||
INTEGRATION = | number of integration points;
STANDARD (number of integration points) ; GAUSSHERMITE (number of integration points) ; MONTECARLO (number of integration points); |
STANDARD
depends on analysis type 15 depends on analysis type |
MCSEED = | random seed for Monte Carlo integration; | 0 |
ADAPTIVE = | ON;
OFF; |
ON |
INFORMATION = | OBSERVED; | depends on |
EXPECTED; | analysis type | |
COMBINATION; | ||
BOOTSTRAP = | number of bootstrap draws;
number of bootstrap draws (STANDARD); number of bootstrap draws (RESIDUAL): |
STANDARD |
LRTBOOTSTRAP = | number of bootstrap draws for TECH14; | depends on
analysis type |
STARTS = | number of initial stage starts and number of final stage optimizations; | depends on
analysis type |
STITERATIONS = | number of initial stage iterations; | 10 |
STCONVERGENCE = | initial stage convergence criterion; | 1 |
STSCALE = | random start scale; | 5 |
STSEED = | random seed for generating random starts; | 0 |
OPTSEED = | random seed for analysis; | |
K-1STARTS = | number of initial stage starts and number of final stage optimizations for the k-1 class model for TECH14; | 20 4 |
LRTSTARTS = | number of initial stage starts and number of final stage optimizations for TECH14; | 0 0 40 8 |
RSTARTS = | number of random starts for the rotation algorithm and number of factor solutions printed for exploratory factor analysis; | depends on
analysis type |
ASTARTS = | number of random starts for the alignment
optimization; |
30 |
H1STARTS = | Number of initial stage starts and number of final stage optimizations for the H1 model; | 0 0 |
DIFFTEST = | file name; | |
MULTIPLIER = | file name; | |
COVERAGE = | minimum covariance coverage with missing data; | .10 |
ADDFREQUENCY = | value divided by sample size to add to cells with zero frequency; | .5 |
ITERATIONS = | maximum number of iterations for the Quasi-Newton algorithm for continuous outcomes; | 1000 |
SDITERATIONS = | maximum number of steepest descent iterations for the Quasi-Newton algorithm for continuous outcomes; | 20 |
H1ITERATIONS = | maximum number of iterations for unrestricted model with missing data; | 2000 |
MITERATIONS = | number of iterations for the EM algorithm; | 500 |
MCITERATIONS = | number of iterations for the M step of the EM algorithm for categorical latent variables; | 1 |
MUITERATIONS = | number of iterations for the M step of the EM algorithm for censored, categorical, and count outcomes; | 1 |
RITERATIONS = | maximum number of iterations in the rotation algorithm for exploratory factor analysis; | 10000 |
AITERATIONS = | maximum number of iterations in the | 5000 |
alignment optimization; | ||
CONVERGENCE = | convergence criterion for the Quasi-Newton algorithm for continuous outcomes; | depends on
analysis type |
H1CONVERGENCE = | convergence criterion for unrestricted model with missing data; | .0001 |
LOGCRITERION = | likelihood convergence criterion for the EM algorithm; | depends on
analysis type |
RLOGCRITERION = | relative likelihood convergence criterion for the EM algorithm; | depends on
analysis type |
MCONVERGENCE = | convergence criterion for the EM algorithm; | depends on
analysis type |
MCCONVERGENCE = | convergence criterion for the M step of the EM algorithm for categorical latent variables; | .000001 |
MUCONVERGENCE = | convergence criterion for the M step of the EM algorithm for censored, categorical, and count outcomes; | .000001 |
RCONVERGENCE = | convergence criterion for the rotation algorithm for exploratory factor analysis; | .00001 |
ACONVERGENCE = | convergence criterion for the derivatives of
the alignment optimization;. |
.001 |
MIXC = | ITERATIONS; | ITERATIONS |
CONVERGENCE; | ||
M step iteration termination based on number of iterations or convergence for categorical latent variables; | ||
MIXU = | ITERATIONS; | ITERATIONS |
CONVERGENCE; | ||
M step iteration termination based on number of iterations or convergence for censored, categorical, and count outcomes; | ||
LOGHIGH = | max value for logit thresholds; | +15 |
LOGLOW = | min value for logit thresholds; | - 15 |
UCELLSIZE = | minimum expected cell size; | .01 |
VARIANCE = | minimum variance value; | .0001 |
SIMPLICITY = | SQRT; | SQRT |
FOURTHRT; | ||
TOLERANCE = | simplicity tolerance value; | .0001 |
METRIC= | REFGROUP; | REFGROUP |
PRODUCT; | ||
MATRIX = | COVARIANCE; | COVARIANCE |
CORRELATION; | ||
POINT = | MEDIAN;
MEAN; MODE; |
MEDIAN |
CHAINS = | number of MCMC chains; | 2 |
BSEED = | seed for MCMC random number generation; | 0 |
STVALUES = | UNPERTURBED;
PERTURBED; ML; |
UNPERTURBED |
MEDIATOR = | LATENT;
OBSERVED; |
depends on
analysis type |
ALGORITHM = | GIBBS;
GIBBS (PX1); GIBBS (PX2); GIBBS (PX3); GIBBS (RW); MH; |
GIBBS (PX1) |
BCONVERGENCE = | MCMC convergence criterion using Gelman-Rubin PSR; | .05 |
BITERATIONS = | maximum and minimum number of iterations for each MCMC chain when Gelman-Rubin PSR is used; | 50000 0 |
FBITERATIONS = | fixed number of iterations for each MCMC chain when Gelman-Rubin PSR is not used; | |
THIN = | k where every k-th MCMC iteration is saved; | 1 |
MDITERATIONS = | maximum number of iterations used to compute the Bayes multivariate mode; | 10000 |
KOLMOGOROV = | number of draws from the MCMC chains; | 100 |
PRIOR = | number of draws from the prior distribution; | 1000 |
INTERACTIVE = | file name; | |
PROCESSORS = | # of processors # of threads; | 1 1</tbody> |