国内OBHRM博导名录
25年11月元分析研讨会
问题、建议与微信群
查看“用R进行一阶验证性因素分析”的源代码
←
用R进行一阶验证性因素分析
跳转至:
导航
、
搜索
因为以下原因,您没有权限编辑本页:
您所请求的操作仅限于该用户组的用户使用:
用户
您可以查看与复制此页面的源代码。
==示意图== [[文件:mplus0501.jpg | center |400px]] ==脚本与注释== <pre>library(lavaan) # 调用lavaan包,如果没有安装,需要先安装 cfadata <- read.table("http://www.obhrm.net/data/ex5.1.dat") # 读取数据文件到cfadata,cfadata是自己命名,可以随便定 names(cfadata) <-c(paste("y", 1:6, sep="")) # 给变量命名 cfamodel <- ' f1 =~ y1 +y2 +y3 # 设置模型,cfamodel还是自己命名 f2 =~ y4 +y5 +y6 ' cfafit <- cfa(cfamodel, cfadata) # 进行CFA,cfafit为自己的命名,方便后面调用 summary(cfafit,fit.measures="TRUE") # 显示CFA的总体结果 fitMeasures(cfafit,fit.measures="all", baseline.model=NULL) # 显示所有拟合指数 standardizedSolution(cfafit) # 显示标准化的结果 library(semTools) # 调用semTools包,如果没有安装,需要先安装 reliability(cfafit) # 计算AVE、CR(Composite Reliability)等值 library(semPlot) # 调用semPlot包来画图,如果没有安装,需要先安装 semPaths(cfafit,whatLabels="std", intercepts=FALSE, style="lisrel", nCharNodes=0, nCharEdges=0, curveAdjacent = TRUE,title=F, layout="tree2",curvePivot=TRUE, rotation=4,fixedStyle = c("black",1),freeStyle = c("black",1))# 画图函数</pre> ==结果== <pre>> summary(cfafit,fit.measures="TRUE") # 显示CFA的结果 lavaan (0.5-23.1097) converged normally after 34 iterations Number of observations 500 Estimator ML Minimum Function Test Statistic 3.896 Degrees of freedom 8 P-value (Chi-square) 0.866 Model test baseline model: Minimum Function Test Statistic 596.921 Degrees of freedom 15 P-value 0.000 User model versus baseline model: Comparative Fit Index (CFI) 1.000 Tucker-Lewis Index (TLI) 1.013 Loglikelihood and Information Criteria: Loglikelihood user model (H0) -4906.609 Loglikelihood unrestricted model (H1) -4904.661 Number of free parameters 13 Akaike (AIC) 9839.218 Bayesian (BIC) 9894.007 Sample-size adjusted Bayesian (BIC) 9852.745 Root Mean Square Error of Approximation: RMSEA 0.000 90 Percent Confidence Interval 0.000 0.027 P-value RMSEA <= 0.05 0.995 Standardized Root Mean Square Residual: SRMR 0.016 Parameter Estimates: Information Expected Standard Errors Standard Latent Variables: Estimate Std.Err z-value P(>|z|) f1 =~ V1 1.000 V2 1.127 0.099 11.378 0.000 V3 1.020 0.089 11.474 0.000 f2 =~ V4 1.000 V5 1.058 0.129 8.226 0.000 V6 0.897 0.105 8.524 0.000 Covariances: Estimate Std.Err z-value P(>|z|) f1 ~~ f2 -0.030 0.052 -0.583 0.560 Variances: Estimate Std.Err z-value P(>|z|) .V1 1.064 0.096 11.124 0.000 .V2 0.798 0.100 7.981 0.000 .V3 1.010 0.095 10.600 0.000 .V4 1.290 0.119 10.880 0.000 .V5 0.854 0.110 7.736 0.000 .V6 1.066 0.097 11.035 0.000 f1 0.907 0.125 7.254 0.000 f2 0.761 0.133 5.740 0.000 > fitMeasures(cfafit,fit.measures="all", baseline.model=NULL) # 显示所有拟合指数 npar fmin chisq df pvalue 13.000 0.004 3.896 8.000 0.866 baseline.chisq baseline.df baseline.pvalue cfi tli 596.921 15.000 0.000 1.000 1.013 nnfi rfi nfi pnfi ifi 1.013 0.988 0.993 0.530 1.007 rni logl unrestricted.logl aic bic 1.007 -4906.609 -4904.661 9839.218 9894.007 ntotal bic2 rmsea rmsea.ci.lower rmsea.ci.upper 500.000 9852.745 0.000 0.000 0.027 rmsea.pvalue rmr rmr_nomean srmr srmr_bentler 0.995 0.029 0.029 0.016 0.016 srmr_bentler_nomean srmr_bollen srmr_bollen_nomean srmr_mplus srmr_mplus_nomean 0.016 0.016 0.016 0.016 0.016 cn_05 cn_01 gfi agfi pgfi 1991.316 2579.520 0.997 0.993 0.380 mfi ecvi 1.004 0.060 > standardizedSolution(cfafit) # 显示标准化的结果 lhs op rhs est.std se z pvalue 1 f1 =~ V1 0.678 0.035 19.348 0.000 2 f1 =~ V2 0.769 0.034 22.524 0.000 3 f1 =~ V3 0.695 0.035 19.953 0.000 4 f2 =~ V4 0.609 0.044 13.699 0.000 5 f2 =~ V5 0.707 0.046 15.433 0.000 6 f2 =~ V6 0.604 0.044 13.596 0.000 7 V1 ~~ V1 0.540 0.048 11.351 0.000 8 V2 ~~ V2 0.409 0.052 7.802 0.000 9 V3 ~~ V3 0.517 0.048 10.682 0.000 10 V4 ~~ V4 0.629 0.054 11.613 0.000 11 V5 ~~ V5 0.501 0.065 7.737 0.000 12 V6 ~~ V6 0.635 0.054 11.843 0.000 13 f1 ~~ f1 1.000 0.000 NA NA 14 f2 ~~ f2 1.000 0.000 NA NA 15 f1 ~~ f2 -0.036 0.062 -0.585 0.559 > library(semTools) > reliability(cfafit) # 计算AVE、CR(Composite Reliability)等值 f1 f2 total alpha 0.7566497 0.6727690 0.5629112 omega 0.7576777 0.6742191 0.7123837 # CR(Composite Reliability) omega2 0.7576777 0.6742191 0.7123837 omega3 0.7576379 0.6741431 0.7072487 avevar 0.5110457 0.4093351 0.4621603 # AVE</pre> [[文件:mplus0501result.jpg | center |400px]] ==CMV== <pre> cmv_model <- 'f1 =~ t1_benef_01 +t1_benef_02 +t1_benef_03 f2 =~ t1_trust_01 +t1_trust_02 +t1_trust_03 cmv =~ t1_benef_01 +t1_benef_02 +t1_benef_03+t1_trust_01 +t1_trust_01 +t1_trust_01 cmv ~~ 1*cmv cmv ~~ 0*f1+0*f2 ' cmv_fit<-cfa(cmv_model, newdata) </pre>
返回至
用R进行一阶验证性因素分析
。
导航菜单
个人工具
登录
命名空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
首页
发起人
编辑团队
编辑练手
最近更改
研究量表
全部量表
中文量表
英文量表
主题量表
统计分析
统计资源
SPSS
Jamovi
R
Mplus
开放数据
学术资源
最佳论文
国际期刊
国内期刊
一站阅读
学术会议
国内院校
自科项目
Zotero
教学资源
重要学者
网络课程
调查报告
心理测验
游戏活动
教学案例
电影视频
常用工具
链入页面
相关更改
特殊页面
页面信息