国内OBHRM博导名录
25年11月元分析研讨会
问题、建议与微信群
查看“卡方分布表 Chi-Square Probabilities”的源代码
←
卡方分布表 Chi-Square Probabilities
跳转至:
导航
、
搜索
因为以下原因,您没有权限编辑本页:
您所请求的操作仅限于该用户组的用户使用:
用户
您可以查看与复制此页面的源代码。
χ²分布具有可加性,也就是一个卡方加上另一个卡方,还是卡方,用公式表示就是:χ₁²+χ₂²=χ₃²。因此χ₁²=χ₃²-χ₂²,也就是一个卡方减去一个卡方,还是卡方。 查χ²分布表时,按自由度及相应的概率去找到对应的值。 * 单侧概率:χ²单侧概率0.05(11)的查表方法就是,在第一列找到自由度11这一行,在第一行中找到概率0.05这一列,行列的交叉处即是19.675。 * 双侧概念:χ²双侧概率0.05(11)的查表方法就是,在第一列找到自由度11这一行,在第一行中找到概率0.05/2=0.025这一列,行列的交叉处即是21.920 。 <table class="wikitable" style="text-align: center;"> <tr> <th>df</th> <th>0.995</th> <th>0.99</th> <th>0.975</th> <th>0.95</th> <th>0.90</th> <th>0.10</th> <th>0.05</th> <th>0.025</th> <th>0.01</th> <th>0.005</th></tr> <tr> <th>1</th> <td>0.00004</td> <td>0.00016</td> <td>0.001</td> <td>0.004</td> <td>0.016</td> <td>2.706</td> <td>3.841</td> <td>5.024</td> <td>6.635</td> <td>7.879</td> </tr> <tr> <th>2</th> <td>0.010</td> <td>0.020</td> <td>0.051</td> <td>0.103</td> <td>0.211</td> <td>4.605</td> <td>5.991</td> <td>7.378</td> <td>9.210</td> <td>10.597</td> </tr> <tr> <th>3</th> <td>0.072</td> <td>0.115</td> <td>0.216</td> <td>0.352</td> <td>0.584</td> <td>6.251</td> <td>7.815</td> <td>9.348</td> <td>11.345</td> <td>12.838</td> </tr> <tr> <th>4</th> <td>0.207</td> <td>0.297</td> <td>0.484</td> <td>0.711</td> <td>1.064</td> <td>7.779</td> <td>9.488</td> <td>11.143</td> <td>13.277</td> <td>14.860</td> </tr> <tr> <th>5</th> <td>0.412</td> <td>0.554</td> <td>0.831</td> <td>1.145</td> <td>1.610</td> <td>9.236</td> <td>11.070</td> <td>12.833</td> <td>15.086</td> <td>16.750</td> </tr> <tr> <th>6</th> <td>0.676</td> <td>0.872</td> <td>1.237</td> <td>1.635</td> <td>2.204</td> <td>10.645</td> <td>12.592</td> <td>14.449</td> <td>16.812</td> <td>18.548</td> </tr> <tr> <th>7</th> <td>0.989</td> <td>1.239</td> <td>1.690</td> <td>2.167</td> <td>2.833</td> <td>12.017</td> <td>14.067</td> <td>16.013</td> <td>18.475</td> <td>20.278</td> </tr> <tr> <th>8</th> <td>1.344</td> <td>1.646</td> <td>2.180</td> <td>2.733</td> <td>3.490</td> <td>13.362</td> <td>15.507</td> <td>17.535</td> <td>20.090</td> <td>21.955</td> </tr> <tr> <th>9</th> <td>1.735</td> <td>2.088</td> <td>2.700</td> <td>3.325</td> <td>4.168</td> <td>14.684</td> <td>16.919</td> <td>19.023</td> <td>21.666</td> <td>23.589</td> </tr> <tr> <th>10</th> <td>2.156</td> <td>2.558</td> <td>3.247</td> <td>3.940</td> <td>4.865</td> <td>15.987</td> <td>18.307</td> <td>20.483</td> <td>23.209</td> <td>25.188</td> </tr> <tr> <th>11</th> <td>2.603</td> <td>3.053</td> <td>3.816</td> <td>4.575</td> <td>5.578</td> <td>17.275</td> <td>19.675</td> <td>21.920</td> <td>24.725</td> <td>26.757</td> </tr> <tr> <th>12</th> <td>3.074</td> <td>3.571</td> <td>4.404</td> <td>5.226</td> <td>6.304</td> <td>18.549</td> <td>21.026</td> <td>23.337</td> <td>26.217</td> <td>28.300</td> </tr> <tr> <th>13</th> <td>3.565</td> <td>4.107</td> <td>5.009</td> <td>5.892</td> <td>7.042</td> <td>19.812</td> <td>22.362</td> <td>24.736</td> <td>27.688</td> <td>29.819</td> </tr> <tr> <th>14</th> <td>4.075</td> <td>4.660</td> <td>5.629</td> <td>6.571</td> <td>7.790</td> <td>21.064</td> <td>23.685</td> <td>26.119</td> <td>29.141</td> <td>31.319</td> </tr> <tr> <th>15</th> <td>4.601</td> <td>5.229</td> <td>6.262</td> <td>7.261</td> <td>8.547</td> <td>22.307</td> <td>24.996</td> <td>27.488</td> <td>30.578</td> <td>32.801</td> </tr> <tr> <th>16</th> <td>5.142</td> <td>5.812</td> <td>6.908</td> <td>7.962</td> <td>9.312</td> <td>23.542</td> <td>26.296</td> <td>28.845</td> <td>32.000</td> <td>34.267</td> </tr> <tr> <th>17</th> <td>5.697</td> <td>6.408</td> <td>7.564</td> <td>8.672</td> <td>10.085</td> <td>24.769</td> <td>27.587</td> <td>30.191</td> <td>33.409</td> <td>35.718</td> </tr> <tr> <th>18</th> <td>6.265</td> <td>7.015</td> <td>8.231</td> <td>9.390</td> <td>10.865</td> <td>25.989</td> <td>28.869</td> <td>31.526</td> <td>34.805</td> <td>37.156</td> </tr> <tr> <th>19</th> <td>6.844</td> <td>7.633</td> <td>8.907</td> <td>10.117</td> <td>11.651</td> <td>27.204</td> <td>30.144</td> <td>32.852</td> <td>36.191</td> <td>38.582</td> </tr> <tr> <th>20</th> <td>7.434</td> <td>8.260</td> <td>9.591</td> <td>10.851</td> <td>12.443</td> <td>28.412</td> <td>31.410</td> <td>34.170</td> <td>37.566</td> <td>39.997</td> </tr> <tr> <th>21</th> <td>8.034</td> <td>8.897</td> <td>10.283</td> <td>11.591</td> <td>13.240</td> <td>29.615</td> <td>32.671</td> <td>35.479</td> <td>38.932</td> <td>41.401</td> </tr> <tr> <th>22</th> <td>8.643</td> <td>9.542</td> <td>10.982</td> <td>12.338</td> <td>14.041</td> <td>30.813</td> <td>33.924</td> <td>36.781</td> <td>40.289</td> <td>42.796</td> </tr> <tr> <th>23</th> <td>9.260</td> <td>10.196</td> <td>11.689</td> <td>13.091</td> <td>14.848</td> <td>32.007</td> <td>35.172</td> <td>38.076</td> <td>41.638</td> <td>44.181</td> </tr> <tr> <th>24</th> <td>9.886</td> <td>10.856</td> <td>12.401</td> <td>13.848</td> <td>15.659</td> <td>33.196</td> <td>36.415</td> <td>39.364</td> <td>42.980</td> <td>45.559</td> </tr> <tr> <th>25</th> <td>10.520</td> <td>11.524</td> <td>13.120</td> <td>14.611</td> <td>16.473</td> <td>34.382</td> <td>37.652</td> <td>40.646</td> <td>44.314</td> <td>46.928</td> </tr> <tr> <th>26</th> <td>11.160</td> <td>12.198</td> <td>13.844</td> <td>15.379</td> <td>17.292</td> <td>35.563</td> <td>38.885</td> <td>41.923</td> <td>45.642</td> <td>48.290</td> </tr> <tr> <th>27</th> <td>11.808</td> <td>12.879</td> <td>14.573</td> <td>16.151</td> <td>18.114</td> <td>36.741</td> <td>40.113</td> <td>43.195</td> <td>46.963</td> <td>49.645</td> </tr> <tr> <th>28</th> <td>12.461</td> <td>13.565</td> <td>15.308</td> <td>16.928</td> <td>18.939</td> <td>37.916</td> <td>41.337</td> <td>44.461</td> <td>48.278</td> <td>50.993</td> </tr> <tr> <th>29</th> <td>13.121</td> <td>14.256</td> <td>16.047</td> <td>17.708</td> <td>19.768</td> <td>39.087</td> <td>42.557</td> <td>45.722</td> <td>49.588</td> <td>52.336</td> </tr> <tr> <th>30</th> <td>13.787</td> <td>14.953</td> <td>16.791</td> <td>18.493</td> <td>20.599</td> <td>40.256</td> <td>43.773</td> <td>46.979</td> <td>50.892</td> <td>53.672</td> </tr> <tr> <th>40</th> <td>20.707</td> <td>22.164</td> <td>24.433</td> <td>26.509</td> <td>29.051</td> <td>51.805</td> <td>55.758</td> <td>59.342</td> <td>63.691</td> <td>66.766</td> </tr> <tr> <th>50</th> <td>27.991</td> <td>29.707</td> <td>32.357</td> <td>34.764</td> <td>37.689</td> <td>63.167</td> <td>67.505</td> <td>71.420</td> <td>76.154</td> <td>79.490</td> </tr> <tr> <th>60</th> <td>35.534</td> <td>37.485</td> <td>40.482</td> <td>43.188</td> <td>46.459</td> <td>74.397</td> <td>79.082</td> <td>83.298</td> <td>88.379</td> <td>91.952</td> </tr> <tr> <th>70</th> <td>43.275</td> <td>45.442</td> <td>48.758</td> <td>51.739</td> <td>55.329</td> <td>85.527</td> <td>90.531</td> <td>95.023</td> <td>100.425</td> <td>104.215</td> </tr> <tr> <th>80</th> <td>51.172</td> <td>53.540</td> <td>57.153</td> <td>60.391</td> <td>64.278</td> <td>96.578</td> <td>101.879</td> <td>106.629</td> <td>112.329</td> <td>116.321</td> </tr> <tr> <th>90</th> <td>59.196</td> <td>61.754</td> <td>65.647</td> <td>69.126</td> <td>73.291</td> <td>107.565</td> <td>113.145</td> <td>118.136</td> <td>124.116</td> <td>128.299</td> </tr> <tr> <th>100</th> <td>67.328</td> <td>70.065</td> <td>74.222</td> <td>77.929</td> <td>82.358</td> <td>118.498</td> <td>124.342</td> <td>129.561</td> <td>135.807</td> <td>140.169</td> </tr> </table>
返回至
卡方分布表 Chi-Square Probabilities
。
导航菜单
个人工具
登录
命名空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
首页
发起人
编辑团队
编辑练手
最近更改
研究量表
全部量表
中文量表
英文量表
主题量表
统计分析
统计资源
SPSS
Jamovi
R
Mplus
开放数据
学术资源
最佳论文
国际期刊
国内期刊
一站阅读
学术会议
国内院校
自科项目
Zotero
教学资源
重要学者
网络课程
调查报告
心理测验
游戏活动
教学案例
电影视频
常用工具
链入页面
相关更改
特殊页面
页面信息