国内OBHRM博导名录
25年11月元分析研讨会
问题、建议与微信群
查看“Mplus CFA Example 5.1”的源代码
←
Mplus CFA Example 5.1
跳转至:
导航
、
搜索
因为以下原因,您没有权限编辑本页:
您所请求的操作仅限于该用户组的用户使用:
用户
您可以查看与复制此页面的源代码。
==示意图== ==代码与注释== <pre>TITLE: this is an example of a CFA with ! 这是标题,总共两行内容,第一行 continuous factor indicators; ! 第二行,想要多少行,就写多少行 DATA: FILE IS ex5.1.dat; ! 读数据文件,文件名要正确,文件路径与对应的分析程序在同一目录下;或标明绝对路径,比如:c:\mplus\ex5.1.dat。 VARIABLE: NAMES ARE y1-y6; ! 读取数据,该数据文件中包括6个变量的数据,变量名称可以自己定。比如,可以是y1-y6,也可以是item1-item6 MODEL: f1 BY y1-y3; ! 定义第1个因素,该因素的测量指标有:y1,y2,y3。如果上面为item1-item6,则修改为item1-item3 f2 BY y4-y6; ! 定义第2个因素,该因素的测量指标有:y4,y5,y6</pre> ==结果== <pre> Mplus VERSION 7.4 ! Mplus的版本信息 MUTHEN & MUTHEN ! Mplus作者信息 10/26/2015 7:54 PM ! 分析时间 INPUT INSTRUCTIONS !输入的命令语言,会全部显示 TITLE: this is an example of a CFA with continuous factor indicators DATA: FILE IS ex5.1.dat; VARIABLE: NAMES ARE y1-y6; MODEL: f1 BY y1-y3; f2 BY y4-y6; INPUT READING TERMINATED NORMALLY this is an example of a CFA with continuous factor indicators SUMMARY OF ANALYSIS Number of groups 1 Number of observations 500 Number of dependent variables 6 Number of independent variables 0 Number of continuous latent variables 2 Observed dependent variables Continuous Y1 Y2 Y3 Y4 Y5 Y6 Continuous latent variables F1 F2 Estimator ML Information matrix OBSERVED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 Input data file(s) ex5.1.dat Input data format FREE THE MODEL ESTIMATION TERMINATED NORMALLY MODEL FIT INFORMATION Number of Free Parameters 19 Loglikelihood H0 Value -4906.609 H1 Value -4904.661 Information Criteria Akaike (AIC) 9851.218 Bayesian (BIC) 9931.295 Sample-Size Adjusted BIC 9870.988 (n* = (n + 2) / 24) Chi-Square Test of Model Fit Value 3.896 Degrees of Freedom 8 P-Value 0.8664 RMSEA (Root Mean Square Error Of Approximation) Estimate 0.000 90 Percent C.I. 0.000 0.027 Probability RMSEA <= .05 0.995 CFI/TLI CFI 1.000 TLI 1.013 Chi-Square Test of Model Fit for the Baseline Model Value 596.921 Degrees of Freedom 15 P-Value 0.0000 SRMR (Standardized Root Mean Square Residual) Value 0.014 MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value F1 BY Y1 1.000 0.000 999.000 999.000 Y2 1.126 0.099 11.368 0.000 Y3 1.019 0.089 11.482 0.000 F2 BY Y4 1.000 0.000 999.000 999.000 Y5 1.059 0.129 8.199 0.000 Y6 0.897 0.105 8.531 0.000 F2 WITH F1 -0.030 0.052 -0.582 0.560 Intercepts Y1 -0.022 0.063 -0.354 0.723 Y2 0.026 0.062 0.410 0.682 Y3 0.035 0.062 0.555 0.579 Y4 -0.022 0.064 -0.350 0.726 Y5 -0.016 0.058 -0.271 0.786 Y6 0.048 0.058 0.824 0.410 Variances F1 0.907 0.125 7.254 0.000 F2 0.760 0.133 5.734 0.000 Residual Variances Y1 1.064 0.096 11.120 0.000 Y2 0.798 0.100 7.972 0.000 Y3 1.010 0.095 10.597 0.000 Y4 1.290 0.119 10.871 0.000 Y5 0.854 0.111 7.710 0.000 Y6 1.066 0.097 11.024 0.000 QUALITY OF NUMERICAL RESULTS Condition Number for the Information Matrix 0.409E-01 (ratio of smallest to largest eigenvalue) Beginning Time: 19:54:46 Ending Time: 19:54:46 Elapsed Time: 00:00:00 MUTHEN & MUTHEN 3463 Stoner Ave. Los Angeles, CA 90066 Tel: (310) 391-9971 Fax: (310) 391-8971 Web: www.StatModel.com Support: Support@StatModel.com Copyright (c) 1998-2015 Muthen & Muthen</pre>
返回至
Mplus CFA Example 5.1
。
导航菜单
个人工具
登录
命名空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
首页
发起人
编辑团队
编辑练手
最近更改
研究量表
全部量表
中文量表
英文量表
主题量表
统计分析
统计资源
SPSS
Jamovi
R
Mplus
开放数据
学术资源
最佳论文
国际期刊
国内期刊
一站阅读
学术会议
国内院校
自科项目
Zotero
教学资源
重要学者
网络课程
调查报告
心理测验
游戏活动
教学案例
电影视频
常用工具
链入页面
相关更改
特殊页面
页面信息