国内OBHRM博导名录
25年11月元分析研讨会
问题、建议与微信群
查看“Mplus ANALYSIS”的源代码
←
Mplus ANALYSIS
跳转至:
导航
、
搜索
因为以下原因,您没有权限编辑本页:
您所请求的操作仅限于该用户组的用户使用:
用户
您可以查看与复制此页面的源代码。
{| border="1" class="sortable" !ANALYSIS: |- | |- | |- | |- | |- | |- |TYPE = |- |GENERAL; |- |GENERAL |- | |- | BASIC; |- | |- | |- | RANDOM; |- | |- | |- | COMPLEX; |- | |- | |- |MIXTURE; |- | BASIC; |- | RANDOM; |- | COMPLEX; |- | |- | |- |TWOLEVEL; |- | BASIC; |- | RANDOM; |- | MIXTURE; |- | COMPLEX; |- | |- | |- |THREELEVEL; |- | BASIC; |- | RANDOM; |- | COMPLEX; |- | |- | |- |CROSSCLASSIFIED; |- | RANDOM; |- | |- | |- |EFA # #; |- | BASIC; |- | MIXTURE; |- | COMPLEX; |- | TWOLEVEL; |- | EFA # # UW* # # UB*; |- | EFA # # UW # # UB; |- | |- |ESTIMATOR = |- |ML; |- |depends on |- | |- |MLM; |- |analysis type |- | |- |MLMV; |- | |- | |- |MLR; |- | |- | |- |MLF; |- | |- | |- |MUML; |- | |- | |- |WLS; |- | |- | |- |WLSM; |- | |- | |- |WLSMV; |- | |- | |- |ULS; |- | |- | |- |ULSMV; |- | |- | |- |GLS; |- | |- | |- |BAYES; |- | |- |MODEL = |- |CONFIGURAL; |- | |- | |- |METRIC; |- | |- | |- |SCALAR; |- | |- | |- |NOMEANSTRUCTURE; |- |means |- | |- |NOCOVARIANCES; |- |covariances |- | |- |ALLFREE; |- |equal |- |ALIGNMENT = |- |FIXED; |- |last class |- | |- | |- |CONFIGURAL |- | |- |FIXED (reference class CONFIGURAL); |- | |- | |- |FIXED (reference class BSEM); |- | |- | |- |FREE; |- |last class |- | |- | |- |CONFIGURAL |- | |- |FREE (reference class CONFIGURAL); |- | |- | |- |FREE (reference class BSEM); |- | |- |DISTRIBUTION = |- |NORMAL; |- |NORMAL |- | |- |SKEWNORMAL; |- | |- | |- |TDISTRIBUTION; |- | |- | |- |SKEWT; |- | |- |PARAMETERIZATION = |- |DELTA; |- |DELTA |- | |- |THETA; |- | |- | |- |LOGIT; |- |LOGIT |- | |- |LOGLINEAR; |- | |- | |- |PROBABILITY; |- |RESCOVARIANCES; |- | |- |RESCOV |- |LINK = |- |LOGIT; |- |LOGIT |- | |- |PROBIT; |- | |- | |- | |- | |- | |- | |- | |- |ROTATION = |- |GEOMIN; |- |GEOMIN (OBLIQUE value) |- | |- |GEOMIN (OBLIQUE value); |- | |- | |- |GEOMIN (ORTHOGONAL value); |- | |- | |- |QUARTIMIN; |- |OBLIQUE |- | |- |CF-VARIMAX; |- |OBLIQUE |- | |- |CF-VARIMAX (OBLIQUE); |- | |- | |- |CF-VARIMAX (ORTHOGONAL); |- | |- | |- |CF-QUARTIMAX; |- |OBLIQUE |- | |- |CF- QUARTIMAX (OBLIQUE); |- | |- | |- |CF- QUARTIMAX (ORTHOGONAL); |- | |- | |- |CF-EQUAMAX; |- |OBLIQUE |- | |- |CF- EQUAMAX (OBLIQUE); |- | |- | |- |CF- EQUAMAX (ORTHOGONAL); |- | |- | |- |CF-PARSIMAX; |- |OBLIQUE |- | |- |CF- PARSIMAX (OBLIQUE); |- | |- | |- |CF- PARSIMAX (ORTHOGONAL); |- | |- | |- |CF-FACPARSIM; |- |OBLIQUE |- | |- |CF- FACPARSIM (OBLIQUE); |- | |- | |- |CF- FACPARSIM (ORTHOGONAL); |- | |- | |- |CRAWFER; |- |OBLIQUE 1/p |- | |- |CRAWFER (OBLIQUE value); |- | |- | |- |CRAWFER (ORTHOGONAL value); |- | |- | |- |OBLIMIN; |- |OBLIQUE 0 |- | |- |OBLIMIN (OBLIQUE value); |- | |- | |- |OBLIMIN (ORTHOGONAL value); |- | |- | |- |VARIMAX; |- | |- | |- |PROMAX; |- | |- | |- |TARGET; |- | |- | |- |BI-GEOMIN; |- |OBLIQUE |- | |- |BI-GEOMIN (OBLIQUE); |- | |- | |- |BI-GEOMIN (ORTHOGONAL); |- | |- | |- |BI-CF-QUARTIMAX; |- |OBLIQUE |- | |- |BI-CF-QUARTIMAX (OBLIQUE); |- | |- | |- |BI-CF-QUARTIMAX (ORTHOGONAL); |- | |- |ROWSTANDARDIZATION = |- |CORRELATION; |- |CORRELATION |- | |- |KAISER; |- | |- | |- |COVARIANCE; |- | |- |PARALLEL = |- |number; |- |0 |- |REPSE = |- |BOOTSTRAP; |- |JACKKNIFE; |- |JACKKNIFE1; |- |JACKKNIFE2; |- |BRR; |- |FAY (#); |- | |- | |- | |- | |- | |- |.3 |- |BASEHAZARD = |- |ON; |- |OFF; |- |ON (EQUAL); |- |ON (UNEQUAL); |- |OFF (EQUAL); |- |OFF (UNEQUAL); |- |depends on |- |analysis type |- |EQUAL |- | |- |EQUAL |- |CHOLESKY = |- |ON; |- |OFF; |- |depends on |- |analysis type |- |ALGORITHM = |- |EM; |- |depends on |- | |- |EMA; |- |analysis type |- | |- |FS; |- |ODLL; |- |INTEGRATION; |- | |- |INTEGRATION = |- |number of integration points; |- |STANDARD (number of integration points) ; |- | |- |GAUSSHERMITE (number of integration points) ; |- |MONTECARLO (number of integration points); |- |STANDARD |- |depends on |- |analysis type |- |15 |- | |- |depends on |- |analysis type |- |MCSEED = |- |random seed for Monte Carlo integration; |- |0 |- |ADAPTIVE = |- |ON; |- |OFF; |- |ON |- |INFORMATION = |- |OBSERVED; |- |depends on |- | |- |EXPECTED; |- |analysis type |- | |- |COMBINATION; |- | |- |BOOTSTRAP = |- |number of bootstrap draws; |- |number of bootstrap draws (STANDARD); |- |number of bootstrap draws (RESIDUAL): |- |STANDARD |- |LRTBOOTSTRAP = |- |number of bootstrap draws for TECH14; |- |depends on |- |analysis type |- |STARTS = |- |number of initial stage starts and number of final stage optimizations; |- |depends on |- |analysis type |- |STITERATIONS = |- |number of initial stage iterations; |- |10 |- |STCONVERGENCE = |- |initial stage convergence criterion; |- |1 |- |STSCALE = |- |random start scale; |- |5 |- |STSEED = |- |random seed for generating random starts; |- |0 |- |OPTSEED = |- |random seed for analysis; |- | |- |K-1STARTS = |- |number of initial stage starts and number of final stage optimizations for the k-1 class model for TECH14; |- |20 4 |- |LRTSTARTS = |- |number of initial stage starts and number of final stage optimizations for TECH14; |- |0 0 40 8 |- |RSTARTS = |- |number of random starts for the rotation algorithm and number of factor solutions printed for exploratory factor analysis; |- |depends on |- |analysis type |- |ASTARTS = |- |number of random starts for the alignment |- |optimization; |- |30 |- |H1STARTS = |- |Number of initial stage starts and number of final stage optimizations for the H1 model; |- |0 0 |- |DIFFTEST = |- |file name; |- | |- |MULTIPLIER = |- |file name; |- | |- |COVERAGE = |- |minimum covariance coverage with missing data; |- |.10 |- |ADDFREQUENCY = |- |value divided by sample size to add to cells with zero frequency; |- |.5 |- |ITERATIONS = |- |maximum number of iterations for the Quasi-Newton algorithm for continuous outcomes; |- |1000 |- |SDITERATIONS = |- |maximum number of steepest descent iterations for the Quasi-Newton algorithm for continuous outcomes; |- |20 |- |H1ITERATIONS = |- |maximum number of iterations for unrestricted model with missing data; |- |2000 |- |MITERATIONS = |- |number of iterations for the EM algorithm; |- |500 |- |MCITERATIONS = |- |number of iterations for the M step of the EM algorithm for categorical latent variables; |- |1 |- |MUITERATIONS = |- |number of iterations for the M step of the EM algorithm for censored, categorical, and count outcomes; |- |1 |- |RITERATIONS = |- |maximum number of iterations in the rotation algorithm for exploratory factor analysis; |- |10000 |- |AITERATIONS = |- |maximum number of iterations in the |- |5000 |- | |- |alignment optimization; |- | |- |CONVERGENCE = |- |convergence criterion for the Quasi-Newton algorithm for continuous outcomes; |- |depends on |- |analysis type |- |H1CONVERGENCE = |- |convergence criterion for unrestricted model with missing data; |- |.0001 |- |LOGCRITERION = |- |likelihood convergence criterion for the EM algorithm; |- |depends on |- |analysis type |- |RLOGCRITERION = |- |relative likelihood convergence criterion for the EM algorithm; |- |depends on |- |analysis type |- |MCONVERGENCE = |- |convergence criterion for the EM algorithm; |- |depends on |- |analysis type |- |MCCONVERGENCE = |- |convergence criterion for the M step of the EM algorithm for categorical latent variables; |- |.000001 |- |MUCONVERGENCE = |- |convergence criterion for the M step of the EM algorithm for censored, categorical, and count outcomes; |- |.000001 |- |RCONVERGENCE = |- |convergence criterion for the rotation algorithm for exploratory factor analysis; |- |.00001 |- |ACONVERGENCE = |- |convergence criterion for the derivatives of |- |the alignment optimization;. |- |.001 |- | |- |MIXC = |- |ITERATIONS; |- |ITERATIONS |- | |- |CONVERGENCE; |- | |- | |- |M step iteration termination based on number of iterations or convergence for categorical latent variables; |- | |- |MIXU = |- |ITERATIONS; |- |ITERATIONS |- | |- |CONVERGENCE; |- | |- | |- |M step iteration termination based on number of iterations or convergence for censored, categorical, and count outcomes; |- | |- |LOGHIGH = |- |max value for logit thresholds; |- |+15 |- |LOGLOW = |- |min value for logit thresholds; |- |- 15 |- |UCELLSIZE = |- |minimum expected cell size; |- |.01 |- |VARIANCE = |- |minimum variance value; |- |.0001 |- |SIMPLICITY = |- |SQRT; |- |SQRT |- | |- |FOURTHRT; |- | |- |TOLERANCE = |- |simplicity tolerance value; |- |.0001 |- |METRIC= |- |REFGROUP; |- |REFGROUP |- | |- |PRODUCT; |- | |- |MATRIX = |- |COVARIANCE; |- |COVARIANCE |- | |- |CORRELATION; |- | |- |POINT = |- |MEDIAN; |- |MEAN; |- |MODE; |- |MEDIAN |- |CHAINS = |- |number of MCMC chains; |- |2 |- |BSEED = |- |seed for MCMC random number generation; |- |0 |- |STVALUES = |- |UNPERTURBED; |- |PERTURBED; |- |ML; |- |UNPERTURBED |- |MEDIATOR = |- |LATENT; |- |OBSERVED; |- |depends on |- |analysis type |- |ALGORITHM = |- |GIBBS; |- |GIBBS (PX1); |- |GIBBS (PX2); |- |GIBBS (PX3); |- |GIBBS (RW); |- |MH; |- |GIBBS (PX1) |- |BCONVERGENCE = |- |MCMC convergence criterion using Gelman-Rubin PSR; |- |.05 |- |BITERATIONS = |- |maximum and minimum number of iterations for each MCMC chain when Gelman-Rubin PSR is used; |- |50000 0 |- |FBITERATIONS = |- |fixed number of iterations for each MCMC chain when Gelman-Rubin PSR is not used; |- | |- |THIN = |- |k where every k-th MCMC iteration is saved; |- |1 |- | |- | |- |MDITERATIONS = |- |maximum number of iterations used to compute the Bayes multivariate mode; |- |10000 |- |KOLMOGOROV = |- |number of draws from the MCMC chains; |- |100 |- |PRIOR = |- |number of draws from the prior distribution; |- |1000 |- |INTERACTIVE = |- |file name; |- | |- |PROCESSORS = |- |# of processors # of threads; |- |1 1 |}
返回至
Mplus ANALYSIS
。
导航菜单
个人工具
登录
命名空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
首页
发起人
编辑团队
编辑练手
最近更改
研究量表
全部量表
中文量表
英文量表
主题量表
统计分析
统计资源
SPSS
Jamovi
R
Mplus
开放数据
学术资源
最佳论文
国际期刊
国内期刊
一站阅读
学术会议
国内院校
自科项目
Zotero
教学资源
重要学者
网络课程
调查报告
心理测验
游戏活动
教学案例
电影视频
常用工具
链入页面
相关更改
特殊页面
页面信息